Skip to main content

Maize (Zea Mays) as a Model for Studying the Impact of Gene and Regulatory Sequence Loss Following Whole-Genome Duplication

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

Modern maize (2n = 20) is functionally diploid, and its chromosomes pair normally, forming 10 bivalents during meiosis. Sufficient genomic rearrangement has occurred that no two maize chromosomes are homologous across their entire lengths. Yet comparisons of genetic maps, duplicate gene sequences, and later genome assemblies revealed maize is descended from a polyploid ancestor which lived 5–12 million years ago. In the time since that polyploid ancestor lived 8,000–9,000 genes conserved at syntenic positions in other grass species have been reduced to single copy in maize while 4,000–5,000 genes are still retained as homologous gene pairs. The consequences of this polyploidy are continuing to resolve in modern maize accessions. With a wide range of data sets generated by an active research community, maize is an unparalleled model for the in silico study of the changes in genome structure, gene content, and gene regulation that a successful polyploidy brings about in a plant lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bomblies K, Doebley JF (2005) Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–1094

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE et al (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Davidson RM et al (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203

    Article  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    Article  PubMed  CAS  Google Scholar 

  • Freeling M et al (2012) Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr Opin Plant Biol, Advance Online Publication

    Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    Article  PubMed  CAS  Google Scholar 

  • Goodman MM et al (1980) Linkage relationships of 19 enzyme Loci in maize. Genetics 96:697–710

    PubMed  CAS  Google Scholar 

  • Helentjaris T et al (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118:353–363

    PubMed  CAS  Google Scholar 

  • Jia Y et al (2009) Loss of RNA–dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5:e1000737

    Article  PubMed  Google Scholar 

  • Lai J et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Li P et al (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Lyons E et al (2008a) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with Rosids. Plant Physiol 148:1772–1781

    Article  PubMed  CAS  Google Scholar 

  • Lyons E et al (2008b) The value of non-model genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the Rosids. Trop Plant Biol 1:181–190

    Article  CAS  Google Scholar 

  • Mathews S et al (2002) Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and ndhF. Int J Plant Sci 163:441–450

    Article  Google Scholar 

  • Paterson AH et al (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1951) Duplicate genes in maize. Am Nat 85:105–110

    Article  Google Scholar 

  • Sankoff D et al (2010) The collapse of gene complement following whole genome duplication. BMC Genomics 11:313

    Article  PubMed  Google Scholar 

  • Schnable JC et al (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074

    Article  PubMed  CAS  Google Scholar 

  • Schnable JC et al (2012) Genome-wide analysis of syntenic gene deletion in the grasses. Genome Biol Evol 4:265–277

    Article  PubMed  CAS  Google Scholar 

  • Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS ONE 6:e17855

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Springer NM et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  Google Scholar 

  • Swanson-Wagner RA et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Swigoňová Z et al (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  Google Scholar 

  • Tang H et al (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinf 12:102

    Article  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thomas BC et al (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homologue leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    Article  PubMed  CAS  Google Scholar 

  • Waters AJ et al (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233

    Article  PubMed  CAS  Google Scholar 

  • Wei F et al (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123

    Article  PubMed  Google Scholar 

  • Wendel JF et al (1986) Duplicated chromosome segments in maize (Zea mays L.): further evidence from hexokinase isozymes. Theoret Appl Genet 72:178–185

    Article  CAS  Google Scholar 

  • Woodhouse MR et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol 8:e1000409

    Article  PubMed  Google Scholar 

  • Yu J et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Vincent Li, a high school intern in the Freeling lab from Project SEED, for identifying the gene fragment shown in Fig. 8.3 and Addie M. Thompson for critical reading of an early version of this text. Funding provided by NSF Plant Genome Research Program grant 0701871 to MF and a Chang-Lin Tien Graduate Fellowship to JCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Freeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnable, J.C., Freeling, M. (2012). Maize (Zea Mays) as a Model for Studying the Impact of Gene and Regulatory Sequence Loss Following Whole-Genome Duplication. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_8

Download citation

Publish with us

Policies and ethics