Skip to main content

Identifying the Phylogenetic Context of Whole-Genome Duplications in Plants

  • Chapter
  • First Online:

Abstract

Although evolutionary biologists have long recognized the transformative evolutionary potential of whole-genome duplications (WGDs) in plants, identifying the precise phylogenetic location of WGDs presents many challenges. This chapter reviews some new approaches to map WGDs on a phylogeny, the first step for understanding the large-scale evolutionary and ecological consequences of WGDs in plants. Specifically, it examines approaches for using chromosome and gene copy number data, gene trees, and other genomic insights to identify the evolutionary location of WGDs. The abundance of genomic sequence data and advances in phylogenetic methods present unprecedented opportunities to place WGDs within the plant tree of life. Still, there exist few direct tests to identify and place WGDs, and analyses of complex data are often susceptible to error.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Åkerborg Ö, Sennlad B, Arvestad L, Lagergren J (2009) Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci USA 106:5714–5719

    Article  PubMed  Google Scholar 

  • Ames RM, Money D, Ghatge VP, Whelan S, Lovell SC (2012) Determining the evolutionary history of gene families. Bioinformatics (In press)

    Google Scholar 

  • Ané C (2008) Analysis of comparative data with hierarchical autocorrelation. Ann Appl Stat 2:107–1102

    Article  Google Scholar 

  • Arvestad L, Berglund A-C, Lagergren J, Sennblad B (2003) Bayesian gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics 19:i7–i15

    Article  PubMed  Google Scholar 

  • Arvestad L, Berglund A-C, Lagergren J, Sennblad B (2004) Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. RECOMB 2004:326–335

    Article  Google Scholar 

  • Arvestad L, Lagergren J, Sennblad B (2009) The gene evolution model and computing its associated probabilities. J ACM 56:7

    Article  Google Scholar 

  • Bansal MS, Eulenstein O (2008) The multiple gene duplication problem revisited. Bioinformatics 24:i132–i138

    Article  PubMed  CAS  Google Scholar 

  • Berglund-Sonnhammer A-C, Steffansson P, Betts MJ, Liberles DA (2006) Optimal gene-trees from sequences and species trees using a soft interpretation of parsimony. J Mol Evol 63:240–250

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1093–1101

    Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome eolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81

    Article  PubMed  CAS  Google Scholar 

  • Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2012) Rapid, repeated, and clustered loss of duplicated genes in allopolyploid plant populations of independent origin. Curr Biol 22:1–5

    Article  Google Scholar 

  • Burleigh JG, Bansal MS, Wehe A, Eulenstein O (2009) Locating large-scale gene duplication events through reconciled trees: implications for identifying ancient polyploidy in plants. J Comput Biol 16:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Burleigh JG, Bansal M, Eulenstein O, Vision TJ (2010) Inferring species trees from gene duplication episodes. Proc BCB 2010:198–203

    Article  Google Scholar 

  • Chang W-C, Eulenstein O (2006) Reconciling gene trees with apparent polytomies. COCOON 2006. LNCS 4112:235–244

    Google Scholar 

  • Chapman BA, Bowers JE, Schulze SR, Paterson AH (2004) A comparative phylogenetic approach for dating whole genome duplication events. Bioinformatics 20:180–185

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary R, Burleigh JG, Eulenstein O (2011) Algorithms for rapid error correction for the gene duplication problem (ISBRA) 2011. LNCS 6674:184−196

    Google Scholar 

  • Chaudhary R, Burleigh JG, Eulenstein O (2012) Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence. BMC Bioinformatics 13:s11

    Article  PubMed  Google Scholar 

  • Chen K, Durand D, Farach-Colton M (2000) Notung: a program for dating gene duplications and optimizing gene family trees. J Comput Biol 7:429–447

    Article  PubMed  CAS  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragapogon miscellus (Asteraceae). Proc Nat Acad Sci USA 109:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Csurös M (2010) Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26:1910–1912

    Article  PubMed  Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, de Pamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Cusimano N, Sousa A, Renner SS (2012) Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in araceae, with a critique of the bias introduced by ‘x’. Ann Bot 109:681−692

    Article  PubMed  Google Scholar 

  • De Bie T, Cristianini N, Demuth JD, Hahn MW (2006) CAFÉ: a computational tool for the study of gene family evolution. Bioinformatics 22:1269–1271

    Article  PubMed  Google Scholar 

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453

    Article  PubMed  Google Scholar 

  • Digby L (1912) The cytology of Primula kewensis and of other related Primula hybrids. Ann Bot 26:357–388

    Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Doyon J-P, Chauve C, Hamel S (2009) Space of gene/species tree reconciliations and parsimonious models. J Comput Biol 16:1399–1418

    Article  PubMed  CAS  Google Scholar 

  • Doyon J-P, Hamel S, Chauve C (2011a) An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework. IEEE/ACM Trans. Comput Biol Bioinform 99: (In press)

    Google Scholar 

  • Doyon J-P, Ranwez V, Daubin V, Berry V (2011b) Models, algorithms and programs for phylogeny reconciliation. Briefings Bioinform 12:392–400

    Article  Google Scholar 

  • Durand D, Halldórsson B, Vernot B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13:320–335

    Article  PubMed  CAS  Google Scholar 

  • Durand D, Hoberman R (2006) Diagnosing duplications—can it be done? Trends Genet 22:156–164

    Article  PubMed  CAS  Google Scholar 

  • Ehrendorfer F, Krendl F, Habeler E, Sauer W (1968) Chromosome numbers and evolution in primitive angiosperms. Taxon 17:337–468

    Article  Google Scholar 

  • Eulenstein O, Huzurbazar S, Liberles DA (2010) Reconciling phylogenetic trees. In: Dittmar K, Liberles D (eds) Evolution after gene duplication. Wiley, Hoboken, pp 185–206

    Google Scholar 

  • Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    Article  PubMed  CAS  Google Scholar 

  • Gerard D, Gibbs HL, Kubatko L (2011) Estimating hybridization in the presence of coalescence using phylogenetic intraspecific sampling. BMC Evol Biol 11:291

    Article  PubMed  Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms: monocotyledons. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 219–239

    Chapter  Google Scholar 

  • Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed by globin sequences. Syst Zool 28:132–163

    Article  CAS  Google Scholar 

  • Gorecki P, Eulenstein O (2012) Simultaneous error correction and rooting for gene tree reconciliation and the gene duplication problem. BMC Bioinformatics (In press)

    Google Scholar 

  • Gorecki P, Eulenstein O, Burleigh JG (2011) Maximum likelihood models and algorithms for gene tree evolution with duplications and losses. BMC Bioinform 12:S15

    Article  Google Scholar 

  • Grant V (1963) The origin of adaptations. Columbia University Press, New York

    Google Scholar 

  • Grant V (1982) Periodicities in the chromosome numbers of the angiosperms. Bot Gaz 143:379–389

    Article  Google Scholar 

  • Guggisberg A, Mansion G, Kelso S, Conti E (2006) Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex in primula. New Phytol 171:617–632

    PubMed  CAS  Google Scholar 

  • Guigó R, Muchnik I, Smith TF (1996) Reconstruction of ancient molecular phylogeny. Mol Phylogenet Evol 6:189–213

    Article  PubMed  Google Scholar 

  • Hahn MW (2007) Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol 8:R141

    Article  PubMed  Google Scholar 

  • Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianni N (2005) Estimating the tempo and mode of gene family evolution from comparative data. Genome Res 15:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Hipp AL, Rothrock PE, Reznicek AA, Berry PE (2007) Chromosome number changes associated with speciation in sedges: a phylogenetic study in Carex section Ovales (Cyperaceae) using AFLP data. Aliso 23:193–203

    Google Scholar 

  • Iwasaki W, Takagi T (2007) Reconstruction of highly heterogeneous gene-content evolution across the three domains of life. Bioinformatics 23:i230–i239

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, de Pamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–102

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Ouzounis CA (2003) GeneTRACE-reconstruction of gene content of ancestral species. Bioinformatics 19:1412–1416

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Librado P, Vieira FG, Rozas J (2012) BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics 28:279–281

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragapogon (Asteraceae). PLoS ONE 3:e3353

    Article  PubMed  Google Scholar 

  • Liu L, Yu L, Kalavacharla V, Liu Z (2011) A bayesian model for gene family evolution. BMC Bioinform 12:426

    Article  Google Scholar 

  • Luo CW, Chen MC, Chen YC, Yang RWL, Liu HF, Chao KM (2009) Linear-time algorithms for the multiple gene duplication problems. IEEE/ACM Trans Comput Biol Bioinform 99:5555

    Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  PubMed  CAS  Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome evolution and the inference of polyploidy. Syst Biol 59:132–144

    Article  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnus-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploidy plants diversify at lower rates. Science 333:1257

    Article  PubMed  CAS  Google Scholar 

  • Meng C, Kubatko LS (2009) Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model. Theor Popul Biol 75:35–45

    Article  PubMed  Google Scholar 

  • Meyers LA, Levin DA (2006) On the abundance of polyploids in flowering plants. Evolution 60:1198–1206

    PubMed  Google Scholar 

  • Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3:2

    Article  PubMed  Google Scholar 

  • Mishima M, Ohmido N, Fukui K, Yahara T (2002) Trends in site-number change of rDNA loci during polyploidy evolution in Sanguisorba (Rosaceae). Chromosoma 110:550–558

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1994) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst Biol 43:58–77

    Google Scholar 

  • Page RDM, Cotton JA (2002) Vertebrate phylogenomics: reconciled trees and gene duplication. Pac Symp Biocomput, 536–547

    Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen MD, Kellis M (2011) A Bayesian approach for fast and accurate gene tree reconstruction. Mol Biol Evol 28:273–290

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen MD, Kellis M (2012) Unified modeling of gene duplication, loss and coalescence using a locus tree. Genome Res 22:755−765

    Google Scholar 

  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Ann Mo Bot Gard 62:724–764

    Article  Google Scholar 

  • Schluter D, Price T, Mooers AØ, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 41:1239–1251

    Google Scholar 

  • Schultheis LM (2001) Systematics of Downingia (Campanulaceae) based on molecular sequence data: implications for floral and chromosome evolution. Syst Bot 26:603–621

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Patterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci 97:7051–7057

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution of archael and proteobacterial gene content. Genome Res 12:17–25

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  Google Scholar 

  • Stace HM, Chapman AR, Lemson KL, Powell JM (1997) Cytoevolution, phylogeny, and taxonomy in Epacridaceae. Ann Bot 79:283–290

    Article  Google Scholar 

  • Stebbins GL (1938) Cytological characteristics associated with the different growth habits in the dicotyledons. Am J Bot 25:189–198

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  • Tate JA, Ni Z, Scheen A-C, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611

    Article  PubMed  CAS  Google Scholar 

  • Vamosi JC, Dickinson TA (2006) Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349–358

    Article  Google Scholar 

  • Vandepoele K, Simillion C, Vande Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752–763

    Article  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplication in arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Walker JW (1972) Chromosome numbers, phylogeny, phytogeography of the Annonaceae and their bearing on the (original) basic chromosome number of angiosperms. Taxon 21:57–65

    Article  Google Scholar 

  • Winge Ö (1917) The chromosomes. Their numbers and general importance. Comptes Rendus des Travaux Laboratoire Carlsberg 13:131–275

    Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploidy speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    Article  PubMed  CAS  Google Scholar 

  • Zheng L-Y, Guo X-S, He B, Sun L-J, Peng Y, Dong S-S, Liu T-F, Jiang S, Ramachandran S, Liu C-M, Jing H-C (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was developed and written in parts with support from the Gene Tree Reconciliation Working Group at NIMBioS through NSF award EF-0832858, with additional support from the University of Tennessee. Discussions with members of the working group including Cecile Ané, Oliver Eulenstein, Pawel Gorecki, and Brian O’Meara were helpful for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gordon Burleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burleigh, J.G. (2012). Identifying the Phylogenetic Context of Whole-Genome Duplications in Plants. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_5

Download citation

Publish with us

Policies and ethics