Skip to main content

Genetic Consequences of Polyploidy in Plants

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

Most eukaryotes have a history of whole-genome multiplication events followed by a progressive return to a more diploid state. The initial state of polyploidization, in which more than two copies of the genome are present, is considered here and the various types of genetic consequences that occur depending on the nature of the polyploid formed. The degree of association of chromosomes in meiosis is determined by the relative homology and will affect the segregation of the chromosome which determines the genetic properties. If all the chromosomes are quite similar and form associations of like type, this situation is referred to as autopolyploidy. If the different sets of multiple chromosomes are sufficiently dissimilar to each other, then the homologs will pair in meiosis with themselves and segregate independently of the different but related chromosome pair. This situation is referred to as allopolyploidy. Gene expression in ploidal series typically follows a per cell level correlated more or less with the number of sets of chromosomes present. Variation of individual chromosomes, or aneuploidy, produces a greater number of modulations of gene expression in parallel to classical studies noting that aneuploids have greater impact on the phenotype than changes in the copy number of the whole genome. The genetic properties of odd-number ploidies, such as triploids, are also described as well as higher ploidal levels such as hexaploidy and octoploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Becker HC (2007) The effect of autopolyploidy on biomass production in homozygous lines of Brassica rapa and Brassica oleracea. Plant Breed 126:642–643

    Article  Google Scholar 

  • Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chèvre AM, Thiellement H (2005) Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics 5:2131–2139

    Article  PubMed  CAS  Google Scholar 

  • Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455

    Article  PubMed  CAS  Google Scholar 

  • Bartlett MS, Haldane JBS (1934) The theory of inbreeding in Autotetraploids. J Genet 29:175–180

    Article  Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829

    Article  Google Scholar 

  • Birchler JA (1979) A study of enzyme activities in a dosage series of the long arm of chromosome one in maize. Genetics 92:1211–1229

    PubMed  CAS  Google Scholar 

  • Birchler JA (2011) Epigenetic aspects of centromere function in plants. Curr Opin Plant Biol 14:217–222

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99:247–266

    PubMed  CAS  Google Scholar 

  • Birchler JA, Bhadra U, Pal Bhadra M, Auger DL (2001) Dosage dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes and quantitative traits. Dev Biol 234:275–288

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S (2007) Biological consequences of dosage dependent gene regulatory systems. Biochem Biophys Acta-Gene Struct Expr 1769:422–428

    Article  CAS  Google Scholar 

  • Blakeslee AF (1934) New Jimson weeds from old chromosomes. J Hered 24:80–108

    Google Scholar 

  • Blakeslee AF (1941) Effect of induced polyploidy in plants. Am Nat 75:117–135

    Article  Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME (1920) Chromosomal duplication and Mendelian phenomena in Datura mutants. Science 52:388–390

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME (1923) Inheritance in tetraploid Daturas. Bot Gaz 76:329–373

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:43

    Article  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Busbice TH, Wilsie CP (1966) Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica 15:52–67

    Google Scholar 

  • Brink RA, Cooper DC (1947) The endosperm in seed development. Bot Rev 13:423–541

    Article  Google Scholar 

  • Catcheside DG (1956) Double reduction and numerical non-disjunction in tetraploid maize. Heredity 10:205–218

    Article  Google Scholar 

  • Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735

    Article  PubMed  CAS  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid, Tragopogon miscellus (Asterasceae). Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Clausen RE (1941) Polyploidy in Nicotiana. Am Nat 75:291–306

    Article  Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    PubMed  CAS  Google Scholar 

  • Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana II. A tetraploid glutinosa-tabacum hybrid. An experimental verification of Winge’s hypothesis. Genetics 10:278–284

    PubMed  CAS  Google Scholar 

  • Cooper DC (1951) Caryopsis development following matings between diploid and tetraploid strains of Zea mays. Am J Bot 38:702–708

    Article  Google Scholar 

  • Doyle GG (1973) Autotetraploid segregation. Theor Appl Genet 43:139–146

    Article  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:1000124

    Article  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the a genomes of wheats inferred from the polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    Article  CAS  Google Scholar 

  • Freeling M, Lyons E, Pedersen B, Alam M, Ming R, Lisch D (2008) Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 18:1924–1937

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Birchler JA (1994) Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266:1999–2002

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    PubMed  CAS  Google Scholar 

  • Groose RW, Talbert LE, Kojis WP, Bingham ET (1989) Progressive heterosis in autotetraploid alfalfa: studies using two types of inbreds. Crop Sci 29:1173–1177

    Article  Google Scholar 

  • Gustafson A (1946) The effect of heterozygosity on viability and vigor. Hereditas 32:263–286

    Article  Google Scholar 

  • Haldane JBS (1930) The theoretical genetics of autopolyploids. J Genet 22:359–372

    Article  Google Scholar 

  • Kihara H (1919) Uber zytologische Studien bei einigen Getreidearten. Bot Mag Tokyo 33

    Google Scholar 

  • Kush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484

    Article  Google Scholar 

  • Lee EA, Darrah LL, Coe EH (1996) Dosage effects on morphological and quantitative traits in maize aneuploids. Genome 39:898–908

    Article  PubMed  CAS  Google Scholar 

  • Levings CS, Dudley JW, Alexander DE (1967) Inbreeding and crossing in autotetraploid maize. Crop Sci 7:72–73

    Article  Google Scholar 

  • Lilienfeld FA (1951) H. Kihara: Genome analysis in Triticum and Aegilops. Concluding review. Cytologia 16:101–123

    Article  Google Scholar 

  • Little TM (1945) Gene segregation in autotetraploids. Bot Rev 11:60–85

    Article  Google Scholar 

  • Little TM (1958) Gene segregation in autotetraploids. II. Bot Rev 24:319–339

    Article  Google Scholar 

  • Maere S, DeBodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Mather K (1935) Reductional and equational separation of the chromosomes in bivalents and tetravalents. J Genet 30:53–78

    Article  Google Scholar 

  • Mather K (1936) Segregation and linkage in autotetraploids. J Genet 32:287–314

    Article  Google Scholar 

  • McClintock B (1929) A cytological and genetical study of triploid maize. Genetics 14:180–227

    PubMed  CAS  Google Scholar 

  • Mok DWS, Peloquin SJ (1975) Breeding value of 2n pollen (diploandroids) in tetraploid x diploid crosses in potato. Theor Appl Genet 46:307–314

    Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284:65–73

    Article  PubMed  CAS  Google Scholar 

  • Punyasingh K (1947) Chromosome numbers in crosses of diploid, triploid and tetraploid maize. Genetics 32:541–554

    PubMed  CAS  Google Scholar 

  • Rabinow L, Nguyen-Huynh AT, Birchler JA (1991) A trans-acting regulatory gene that inversely affects the expression of the white, brown and scarlet loci in Drosophila melanogaster. Genetics 129:463–480

    PubMed  CAS  Google Scholar 

  • Randolph L (1935) Cytogenetics of tetraploid maize. J Agri Res 50:591–605

    Google Scholar 

  • Randolph LF (1942) The influence of heterozygosis on fertility and vigor in autotetraploid maize. Genetics 27:163

    Google Scholar 

  • Randolph LF, Fischer HE (1939) The occurrence of parthenogenetic diploids in tetraploid maize. Proc Natl Acad Sci USA 25:161–164

    Article  PubMed  CAS  Google Scholar 

  • Redei G (1964) Crossing experiences with polyploids. Arabidopsis Inf Serv 1:13

    Google Scholar 

  • Rhoades MM, Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54:505–522

    PubMed  CAS  Google Scholar 

  • Riddle NC, Birchler JA (2008) Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theor Appl Genet 116:563–576

    Article  PubMed  Google Scholar 

  • Riddle NC, Kato A, Birchler JA (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111

    Article  PubMed  Google Scholar 

  • Riddle NC, Jiang H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    Article  PubMed  CAS  Google Scholar 

  • Satina S, Blakeslee AF (1937a) Chromosome behavior in triploid Datura stramonium I. The male gametophyte. Am J Bot 24:518–527

    Article  Google Scholar 

  • Satina S, Blakeslee AF (1937b) Chromosome behavior in triploid Datura stramonium II. The female gametophyte. Am J Bot 24:621–627

    Article  Google Scholar 

  • Satina S, Blakeslee AF, Avery AG (1937) Balanced and unbalanced haploids in Datura. J Hered 28:192–202

    Google Scholar 

  • Satina S, Blakeslee AF, Avery AG (1938) Chromosome behavior in triploid Datura. III. The seed. Am J Bot 25:595–602

    Article  Google Scholar 

  • Sears ER (1944) Cytogenetic studies with polyploid species of wheat. II. Additional chromosome aberrations in Triticum vulgare. Genetics 29:232–246

    PubMed  CAS  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Article  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Mo Res Bull 572:1–58

    Google Scholar 

  • Simillion C, Vandepoele K, Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed  CAS  Google Scholar 

  • Singh RJ (1993) Plant cytogenetics. CRC Press Inc, Boca Raton

    Google Scholar 

  • Sockness BA, Dudley JW (1989a) Performance of single and double cross autotetraploid maize hybrids with different levels of inbreeding. Crop Sci 29:875–879

    Article  Google Scholar 

  • Sockness BA, Dudley JW (1989b) Morphology and yield of isogenic diploid and tetraploid maize inbreds and hybrids. Crop Sci 29:1029–1032

    Article  Google Scholar 

  • Stebbins GL Jr (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    Article  PubMed  Google Scholar 

  • Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Cr Buell, Jiang J (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidazation. Genetics 176:2055–2067

    Article  PubMed  CAS  Google Scholar 

  • Upcott M (1935) The cytology of triploid and tetraploid Lycopersicum esculentum. J Genet 27:105–132

    Google Scholar 

  • Veitia RA (2002) Exploring the etiology of haploinsufficiency. BioEssays 24:175–184

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2004) Gene dosage balance in cellular pathways: implications for dominance and gene duplicability. Genetics 168:569–574

    Article  PubMed  Google Scholar 

  • Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397

    Article  PubMed  CAS  Google Scholar 

  • Vizir IY, Mulligan BJ (1999) Genetics of gamma-irradiation-induced mutations in Arabidopsis thaliana: large chromosomal deletions can be rescued through fertilization of diploid eggs. J Hered 90:412–417

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Tina L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Weber DF (1983) Monosomic analysis in diploid crop plants. In: Swaminathan MS, Gupta PK, Sinha U (eds) Cytogenetics of crop plants. Macmillan India Limited, New Delhi, pp 351–378

    Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Kato A, Mooney B, Birchler JA (2011) Phenotypic and gene expression analysis of a ploidy series of maize inbred Oh43. Plant Mol Biol 75:237–251

    Article  PubMed  CAS  Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010) The molecular features of chromosome pairing at meiosis: the polyploidy challenge using wheat as a reference. Funct Integr Genomics 10:147–156

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Haberer G, Matthes M, Rattei T, Mayer KF, Gierl A, Torres-Ruiz RA (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Natl Acad Sci USA 107:17809–17814

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by National Science Foundation grant DBI 0733857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birchler, J.A. (2012). Genetic Consequences of Polyploidy in Plants. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_2

Download citation

Publish with us

Policies and ethics