Skip to main content

Jeans, Genes, and Genomes: Cotton as a Model for Studying Polyploidy

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

We present an overview of the cotton genus (Gossypium) as a model for the study of polyploidy. A synopsis of the origin and evolution of polyploid cotton is provided, offering an organismal framework and phylogenetic perspective that is critical for understanding modes and mechanisms of gene and genome evolution. Sequence data from thousands of genes implicate a mid-Pleistocene (1–2 mya) origin of polyploid cotton, following trans-oceanic dispersal of an Old World, A-genome diploid to the New World and subsequent hybridization with an indigenous D-genome diploid. This chance biological reunion, occurring after 5–10 million years of diploid evolution in isolation, has led to an array of molecular genetic interactions in the newly formed allopolyploid lineage, including nonreciprocal homoeologous recombination and perhaps other forms of interlocus concerted evolution, differential rates of genomic evolution, intergenomic spread of transposable elements, and myriad forms of alterations in duplicate expression relative to that experienced in the ancestral diploids. The latter include developmental, organ-, tissue-, and cell-specific biases in homoeologous gene expression, which can be sensitive to various forms of environmental perturbation and stress. The allopolyploid Gossypium transcriptome is exceptionally dynamic, with homoeolog expression ratios being subject to change even during development of the single-celled cotton fiber. Expression evolution is temporally partitioned into changes accompanying genome merger (hybridization) at the diploid level, polyploidization, and longer term evolution at the allopolyploid level. Evidence indicates that allopolyploidy facilitated colonization of a new ecological niche for the genus and led to an enhanced capacity for developing agronomically superior cotton varieties. The myriad mechanisms that underlie genomic and regulatory evolution are suggested to have contributed to both ecological success and agronomic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Nat Acad Sci USA 100:4649–4654

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226

    Article  CAS  PubMed  Google Scholar 

  • Applequist WL, Cronn RC, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  CAS  PubMed  Google Scholar 

  • Bardil A, Dantas de Almeida J, Combes MC, Lashermes P, Bertrand B (2011) Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol (in press)

    Google Scholar 

  • Beasley JO (1941) Hybridization, cytology, and polyploidy of Gossypium. Chronica Bot 6:394–395

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 89–162

    Chapter  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62

    Article  CAS  PubMed  Google Scholar 

  • Bottley A, Koebner RM (2008) Variation for homoeologous gene silencing in hexaploid wheat. Plant J 56:297–302

    Article  CAS  PubMed  Google Scholar 

  • Bottley A, Xia G, Koebner R (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  CAS  PubMed  Google Scholar 

  • Brubaker CL, Bourland FM, Wendel JF (1999a) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology and production. Wiley, New York, pp 3–31

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999b) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Brubaker CL, Wendel JF (1993) On the specific status of Gossypium lanceolatum Todaro. Genet Res Crop Evol 40:165–170

    Article  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326

    Article  Google Scholar 

  • Brubaker CL, Wendel JF (2001) RFLP diversity in cotton. In: Jenkins JN, Saha S (eds) Genetic improvement of cotton: emerging technologies. Science Publishers, Inc., Enfield, pp 81–102

    Google Scholar 

  • Buggs RJA, Elliott NM, Zhang L, Koh J, Viccini LF, Soltis DE, Soltis PS (2010) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186:175–183

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  Google Scholar 

  • Cronn R, Small RL, Wendel JF (1999) Duplicated genes evolve independently following polyploid formation in cotton. Proc Nat Acad Sci USA 96:14406–14411

    Article  CAS  PubMed  Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42(6):685–705

    Article  CAS  PubMed  Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Amer J Bot 79:1311–1319

    Article  Google Scholar 

  • Dong S, Adams KL (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190(4):1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Quart Rev Biol 70:297–320

    Article  CAS  PubMed  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:271–375

    Article  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:11

    Article  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF, Udall JA (2012) Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics (in press)

    Google Scholar 

  • Fryxell PA (1965) Stages in the evolution of Gossypium. Adv Frontiers Plant Sci 10:31–56

    Google Scholar 

  • Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308

    Article  Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribe Texas. A&M University Press College Station, College Station

    Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Galau GA, Wilkins TA (1989) Alloplasmic male sterility in AD allotetraploid Gossypium hirsutum upon replacement of its resident a cytoplasm with that of D species G. harknessii. Theor Appl Genet 78:23–30

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grover CE, Kim H, Wing RA, Paterson AH, Wendel JF (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Grover CE, Kim H, Wing RA, Paterson AH, Wendel JF (2007) Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium). Plant J 50:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, Mcknight TD, Price HJ, Stelly DM (1999) Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 8:73–76

    Article  Google Scholar 

  • Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, McKnight TD, Stelly DM, Price HJ (1998) Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Harland SC (1936) The genetical conception of the species. Cambridge Philos Soc Biol Rev 11:83–112

    Article  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16(10):1252–1261

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Nat Acad Sci USA 106(42):17811–17816

    Article  CAS  PubMed  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    Article  CAS  PubMed  Google Scholar 

  • Hovav R, Chaudhary B, Udall JA, Flagel L, Wendel JF (2008a) Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics 179(3):1725–1733

    Article  PubMed  Google Scholar 

  • Hovav R, Udall J, Chaudhary B, Flagel L, Rapp R, Wendel J (2008b) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Nat Acad Sci USA 105:6191

    Google Scholar 

  • Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel JF (2008c) The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet 4:e25

    Article  PubMed  Google Scholar 

  • Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Houston NL, Pathak D, Schmidt L, Thelan JJ, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson JB (1951) Intra-specific differentiation in Gossypium hirsutum. Heredity 5:161–193

    Article  Google Scholar 

  • Hutchinson JB (1954) New evidence on the origin of the old world cottons. Heredity 8:225–241

    Article  Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. Oxford University Press, London

    Google Scholar 

  • Jiang C, Wright R, El-Zik K, Paterson A (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Nat Acad Sci USA 95:4419–4424

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing, and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  Google Scholar 

  • Krapovickas A, Seijo G (2008) Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 17:55–63

    Google Scholar 

  • Lin L, Paterson AH (2009) Physical composition and organization of the Gossypium genomes. In: Paterson AH (ed) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New York, pp 141–156

    Chapter  Google Scholar 

  • Lin LF, Tang HB, Compton RO, Lemke C, Rainville LK, Wang XY, Rong JK, Rana MK, Paterson AH (2011) Comparative analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage. Genomics 97:313–320

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Adams KL (2007) Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 17:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Muravenko O, Fedotov AR, Punina EO, Federova LI, Grif VG, Zelenin AV (1998) Comparison of chromosome BrdU-hoechst-giemsa banding patterns of the A1 and (AD)2 genomes of cotton. Genome 41:616–625

    CAS  Google Scholar 

  • Osborn TC, Chris Pires J, Birchler JA, Auger DL, Jeffery Chen Z, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19(3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (2009) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New York

    Book  Google Scholar 

  • Percy RG, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Appl Genet 79:529–542

    Article  Google Scholar 

  • Rapp R, Haigler C, Flagel L, Hovav R, Udall J, Wendel J (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139

    Article  PubMed  Google Scholar 

  • Rapp R, Wendel J (2005) Epigenetics and plant evolution. New Phytol 168:81

    Article  CAS  PubMed  Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18

    Article  PubMed  Google Scholar 

  • Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum x G. barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    CAS  PubMed  Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JR, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Feltus FA, Liu L, Lin L, Paterson AH (2010) Gene copy number evolution during tetraploid cotton radiation. Heredity 105(5):463–472

    Article  CAS  PubMed  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    Article  CAS  PubMed  Google Scholar 

  • Saunders JH (1961) The wild species of Gossypium and their evolutionary history. Oxford University Press, London

    Google Scholar 

  • Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JF (1999) Molecular systematics of Australian Gossypium section grandicalyx (Malvaceae). Syst Bot 24:183–208

    Article  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong JK, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  CAS  PubMed  Google Scholar 

  • Small RL, Ryburn JA, Wendel JF (1999) Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16:491–501

    Article  CAS  PubMed  Google Scholar 

  • Small RL, Wendel JF (1999) The mitochondrial genome of allotetraploid cotton (Gossypium L.). J Hered 90:251–253

    Article  CAS  PubMed  Google Scholar 

  • Small RL, Wendel JF (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19:597–607

    Article  CAS  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Nat Acad Sci USA 97:7051–7057

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    Article  PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stephens SG (1958) Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. Amer Nat 92:83–92

    Article  Google Scholar 

  • Stephens SG (1966) The potential for long range oceanic dispersal of cotton seeds. Amer Nat 100:199–210

    Article  Google Scholar 

  • Stewart JM (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW (eds) Challenging the future: proceedings of the world cotton research, CSIRO, Melbourne, pp 313–327

    Google Scholar 

  • Stewart JM, Oosterhuis D, Heithholt JJ, Mauney JR (2010) Physiology of cotton. Springer, The Netherlands

    Book  Google Scholar 

  • Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173(3):1823–1827

    Article  CAS  PubMed  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16R:872–873

    Article  CAS  PubMed  Google Scholar 

  • Veitia RA (2005) Gene dosage balance: deletions, duplications and dominance. Trends Genet 21:33

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  CAS  PubMed  Google Scholar 

  • Watt G (1907) The wild and cultivated cotton plants of the world. Longmans, Green and Co, London

    Google Scholar 

  • Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Nat Acad Sci USA 86:4132–4136

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Brubaker CL, Alvarez JP, Cronn RC, Stewart JM (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New York, pp 3–22

    Chapter  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wendel JF, Rowley R, Stewart JM (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Pl Syst Evol 192:49–59

    Article  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Nat Acad Sci USA 92:280–284

    Article  CAS  PubMed  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149:1987–1996

    CAS  PubMed  Google Scholar 

  • Xu Z, Yu JZ, Cho J, Yu J, Kohel RJ, Percy RG (2010) Polyploidization altered gene functions in cotton (Gossypium spp.). PLoS ONE 5:e14351

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Wendel lab has largely been funded by the NSF Plant Genome Program, with additional support from other NSF programs, the USDA NRI, and Cotton Incorporated. Research in the Adams lab has been supported by the Natural Science and Engineering Research Council of Canada and by the USDA NRI program. We gratefully acknowledge all of these sources of support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendel, J.F., Flagel, L.E., Adams, K.L. (2012). Jeans, Genes, and Genomes: Cotton as a Model for Studying Polyploidy. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_10

Download citation

Publish with us

Policies and ethics