Simulation of Submarine Landslides by Cellular Automata Methodology

  • V. Avolio Maria
  • Bozzano Francesca
  • Di Gregorio SalvatoreEmail author
  • Lupiano Valeria
  • Mazzanti Paolo


Numerical modelling is a powerful tool for assessing risk related to submarine landslides and their possible consequences (i.e. impact on structures, induced tsunamis, etc.). To this aim, the simulation of the propagation phase of flow-like landslides is particularly important. A new model (named SCIDDICA-SS2), which is based on the Macroscopic Cellular Automata computational paradigm, has been specifically designed for the simulation of coastal and underwater landslides. SCIDDICA-SS2 is a fully 3D model based on the equivalent fluid approach. It accounts for the most important mechanism controlling the propagation of an underwater landslide as well as peculiar mechanisms like erosion of the seabed, hydroplaning and air to water impact (in the case of coastal landslides). The 1997 debris flow (subaerial–submerged landslide) at Lake Albano (Italy), the 2008 submarine debris flow at Bagnara Calabra (Italy) and the 1888 submarine debris flow at Trondheim (Norway) have been simulated by SCIDDICA-SS2, showing its high performances in simulating submarine landslides.


Cellular automata Flow-like landslides Modelling Propagation SCIDDICA 


  1. Avolio MV, Crisci GM, D’Ambrosio D, Di Gregorio S, Iovine G, Rongo R, Spataro W (2003) An extended notion of cellular automata for surface flows modelling. WSEAS Trans Comput 4(2):1080–1085Google Scholar
  2. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, D’Ambrosio D (2006) Pyroclastic flows modelling using cellular automata. Comput Geosci 32:897–911CrossRefGoogle Scholar
  3. Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2008) Modelling combined subaerial-subaqueous flow-like landslides by cellular automata. LNCS 5191. In: Proceedings of ACRI 2008, Yokohama, pp 329–336, 23–26 Sept 2008Google Scholar
  4. Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2009) An advanced cellular model for flow-type landslide with simulations of subaerial and subaqueous cases. In: Proceedings of the 23rd international conference on informatics for environmental protection, 1, Berlin, pp 131–140, 9–11 Sept 2009Google Scholar
  5. Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P, Spataro W (2010) Application context of the SCIDDICA model family for simulations of flow-like landslides. In: Proceedings of the 2010 international conference on scientific computing, Las Vegas, pp 40–46, 12–15 July 2010Google Scholar
  6. Avolio MV, Errera A, Lupiano V, Mazzanti P, Di Gregorio S (2010) Development and calibration of a preliminary cellular automata model for snow avalanches. In: LNCS 6350, proceedings of ACRI 2010, Ascoli, pp 329–336, 21–24 Sept 2010Google Scholar
  7. Barpi F, Borri-Brunetto M, Delli VL (2007) Cellular-automata model for dense-snow avalanches. J Cold Reg Eng 21(4):121–140CrossRefGoogle Scholar
  8. Bozzano F, Mazzanti P, Anzidei M, Bianchi Fasani G, Esposito C, Esposito A, Floris M (2009) Slope dynamics of lake Albano (Rome, Italy): insights from the high resolution bathymetry. Earth Surf Process Landf 34:1469–1486CrossRefGoogle Scholar
  9. Clerici A, Perego S (2000) Simulation of the parma river blockage by the Corniglio landslide (Northern Italy). Geomorphology 33:1–23CrossRefGoogle Scholar
  10. Crisci GM, Di Gregorio S, Ranieri GA (1982) A cellular space model of basaltic lava flow. In: Proceedings of AMSE conference modelling & simulation, Paris-Sud, pp 65–67, 1–3 July 1982Google Scholar
  11. De Blasio FV (2011) Introduction to the physics of landslides. Lecture notes on the dynamics of mass wasting. Springer, Heidelberg (ISBN 978-94-007-1121-1) 408pGoogle Scholar
  12. De Blasio FV, Engvik LE, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109(C01002):1–16Google Scholar
  13. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Res 106(B1):553–566CrossRefGoogle Scholar
  14. Di Gregorio S, Serra R (1999) An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Gener Comput Syst 16:259–271CrossRefGoogle Scholar
  15. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59CrossRefGoogle Scholar
  16. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  17. Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides in the flow type. Environ Eng Geosci 7(3):221–228Google Scholar
  18. Iovine G, D’Ambrosio D, Di Gregorio S (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66:287–303CrossRefGoogle Scholar
  19. L’Heureux JS, Glimsdal S, Longva O, Hansen L, Harbitz CB (2010) The 1888 shoreline landslide and tsunami in Trondheimsfjorden, central Norway. Mar Geophys Res 32:313–329CrossRefGoogle Scholar
  20. Marr JG, Elverhøi A, Harbitz C, Imran J, Harff P (2002) Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard Barents sea. Mar Geol 188:351–364CrossRefGoogle Scholar
  21. Mazzanti P (2008) Analysis and modelling of coastal landslides and induced tsunamis. Ph.D. thesis, Department of Earth Sciences, “Sapienza” University of Rome, RomeGoogle Scholar
  22. Mazzanti P, Bozzano F (2009) An equivalent fluid/equivalent medium approach for the numerical simulation of coastal landslide’s propagation: theory and case studies. Nat Hazard Earth Syst Sci 9:1941–1952CrossRefGoogle Scholar
  23. Mazzanti P, Bozzano F, Esposito C (2007) Submerged landslides morphologies in the Albano lake (Rome, Italy). In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences, advances in natural and technological hazards series 27. Springer, Heidelberg, (ISBN 9781 4020 6511 8) 424pGoogle Scholar
  24. Mazzanti P, Bozzano F, Avolio MV, Lupiano V, Di Gregorio S (2009) 3D numerical modelling of submerged and coastal landslides propagation. In: Mosher DC, Shipp C, Moscardelli L, Chaytor J, Baxter C, Lee H, Urgeles R (eds) Submarine mass movements and their consequences IV, advances in natural and technological hazards series, 28. Springer, Heidelberg (ISBN: 9048130700) p 786Google Scholar
  25. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide run out motion across three dimensional terrain. Can Geotech J 41(6):1084–1097CrossRefGoogle Scholar
  26. Mohrig D, Whipple K, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110:387–394CrossRefGoogle Scholar
  27. Pirulli M, Marco F (2010) Description and numerical modelling of the October 2000 Nora debris flow, Northwestern Italian Alps. Can Geotech J 47:135–146CrossRefGoogle Scholar
  28. Salles T, Lopez S, Cacas MC, Mulder T (2007) Cellular automata model of density currents. Geomorphology 88:1–20CrossRefGoogle Scholar
  29. Segre E, Deangeli C (1995) Cellular automaton for realistic modelling of landslides. Nonlinear Processes Geophys 2(1):1–15CrossRefGoogle Scholar
  30. von Neumann J (1966) Theory of self reproducing automata. University of Illinois Press, Urbana (ISBN 0598377980) 388pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Avolio Maria
    • 1
  • Bozzano Francesca
    • 2
    • 3
  • Di Gregorio Salvatore
    • 1
    Email author
  • Lupiano Valeria
    • 4
  • Mazzanti Paolo
    • 2
    • 3
  1. 1.Department of MathematicsUniversity Of CalabriaRendeItaly
  2. 2.Dipartimento di Scienze della Terra, “Sapienza”Università di RomaRomeItaly
  3. 3.NHAZCA S.r.l., spin-off “Sapienza”Università di RomaRomeItaly
  4. 4.Department of Earth SciencesUniversity Of CalabriaRendeItaly

Personalised recommendations