Skip to main content

Dynamics, Velocity, and Run-Out of Subaqueous Rock Avalanches

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Two models are introduced for the rheology and dynamics of subaqueous rock avalanches. Both models stem from the premise that the initial rock slab is rapidly transformed into a fragmented medium. The first model is based on hydroplaning; however, if hydroplaning occurs, it can start only after sufficient fragmentation, and with a permeable matrix. In a second model, the fragmenting rock absorbs water in its matrix, thus changing into a non-hydroplaning cohesive flow that progressively loses strength. Numerical simulations and theoretical considerations show that both processes are theoretically possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breien H, Pagliardi M, Elverhøi A, De Blasio FV, Issler D (2007) Experimental studies of subaqueous vs. Subaerial debris flows-velocity characteristics as a function of the ambient fluid. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Springer, Berlin

    Google Scholar 

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112. doi:10.1029/2005JF000455

  • De Blasio (2011b) Submitted to earth and planetary science letters

    Google Scholar 

  • De Blasio FV (2011) Introduction to the physics of landslides. Springer, Berlin

    Book  Google Scholar 

  • De Blasio FV, Elverhøi A, Engvik L, Issler D, Gauer P, Harbitz C (2006a) Understanding the high mobility of subaqueous debris flows. Nor J Geol, special issue on “Submarine mass movements and their consequences”. 86:275–284

    Google Scholar 

  • De Blasio FV, Engvik LE, Elverhøi A (2006b) Sliding of outrunner blocks from submarine landslides. Geophys Res Lett 33:L06614. doi:10.1029/2005GL025165

    Article  Google Scholar 

  • Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Segoufin J, Cheminee JL (2001) Submarine evidence for large scale debris avalanches in the Lesser Antilles Arc. Earth Planet Sci Lett 192:145–157

    Article  Google Scholar 

  • Elverhøi A, De Blasio FV, Butt FA, Issler D, Harbitz C, Engvik L, Solheim A, Marr J (2002) Submarine mass wasting on glacially influenced continental slopes-processes and dynamics. In: Glacier-influenced sedimentation in high-latitude continental margins, Geological Society. London, Special Publications 203, 73

    Google Scholar 

  • Hildenbrand A, Gillot PY, Bonneville A (2006) Offshore evidence for a huge landslide of the northern flank of Tahiti-Nui (French Polynesia). Geochem Geophys Geosyst (G3) 7(3):Q03006, doi:10.1029/2005GC001003

  • Hungr O, Evans SG, Bovis MV, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Ilstad T, Marr J, Elverhøi A, Issler D, Harbitz C (2004) Laboratory studies of subaqueous debris flow by measurements of pore-fluid pressure and total stress. Mar Geol 213:403–414

    Article  Google Scholar 

  • Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flows with graphical user interface. Comput Geosci 27(6):721–733

    Google Scholar 

  • Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher CE (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaai. J Geophys Res 93:4279–4299

    Article  Google Scholar 

  • Locat J, Lee HJ (2001) Submarine landslides: advances and challenges. Can Geotech J 39:193–212

    Article  Google Scholar 

  • Locat P, Couture R, Leroueil S, Locat J, Jaboyedoff M (2006) Fragmentation energy in rock avalanches. Can Geotech J 43(8):830–851

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35

    Article  Google Scholar 

  • Mazzanti P and De Blasio FV (2011) The dynamics of subaqueous rock avalanches: the role of dynamic fragmentation. This book

    Google Scholar 

  • McSaveney M and Davies T (2006) Rapid rock-mass flow with dynamic fragmentation, In: Scarascia Mugnozza G, Strom A, Hermanns RL (eds) NATO science series. Springer, Berlin (2006)

    Google Scholar 

  • Mitchell NC, Douglas G, Masson DG, Watts AB, Gee MJR, Urgeles R (2002) The morphology of the submarine flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J Volcanol Geotherm Res 115:83–107

    Article  Google Scholar 

  • Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flow. Geol Soc Am Bull 110(3):387–394

    Article  Google Scholar 

  • Normark WR, McGann M, Sliter R (2004) Age of Palos Verdes submarine debris avalanche, southern California. Mar Geol 203: 247–259

    Article  Google Scholar 

  • Parker TJ, Gorsline DS, Saunders RS, Pieri D, Schneeberger DM (1993) Coastal geomorphology of the martian northern plains. J Geophys Res 98:11061–11078

    Article  Google Scholar 

  • Pollet N, Schneider JLM (2004) Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth Planet Sci Lett 221:433–448

    Article  Google Scholar 

  • Rhodes M (2008) Introduction to particle technology. Wiley, Chichester

    Book  Google Scholar 

  • Satake K, Kato Y (2001) The 1741 Oshima-Oshima eruption: extent and volume of submarine debris avalanche. Geophys Res Lett 28:427–430

    Article  Google Scholar 

  • Schiffmann P, Watters RJ, Thompson N, Walton AW (2005) Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific drilling project’s 3-km drill core. J Volcanol Geoth Res 151:217–228

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H (ed) Encyclopedia of volcanology. Academic, San Diego

    Google Scholar 

  • Urgeles R, Canals M, Masson DG, Gee MJR (2003) El Hierro: shaping of an Oceanic Island by mass wasting. In: Mienert J, Weaver P (eds) European margin sediment dynamics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Vittorio De Blasio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Blasio, F.V. (2013). Dynamics, Velocity, and Run-Out of Subaqueous Rock Avalanches. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31427-8_7

Download citation

Publish with us

Policies and ethics