Skip to main content

Interaction of Landslide Mass and Water Resulting in Impulse Waves

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Landslides can occur in different environments and can interact with water basins of different characteristics. The transition from subaerial to subaqueous conditions can strongly control the landslide evolution and the generation of impulse waves, and therefore the final hazard zonation. Modelling the landslide spreading, the impact with the water surface and the generation of the impulse wave is a challenging work. We verify the capabilities of a fully 2D FEM approach to perform such a modelling and to analyse near-field evolution. To this aim we simulate the Vajont rockslide and the consequent impulse wave, and some laboratory tests available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie S, Morichon D, Grilli S, Glockner S (2010) Numerical simulation of waves generated by landslides using a multiple-fluid-Navier–Stokes model. Coastal Eng 57:779–794

    Article  Google Scholar 

  • Blikra L, Longva O, Harbitz C, Løvholt F (2005) Quantification of rock-avalanche and tsunami hazard in storfjorden, western norway. In: Senneset K, Flaate K, Larsen JO (eds) Landslides and Avalanches, ICFL 2005 Norway. Taylor & Francis, London, pp 57–64

    Google Scholar 

  • Broili L (1967) New knowledge on the geomorphology of the Vaiont Slide slip surfaces. Rock Mech Eng Geol J Int Soc Rock Mech V(1):38–88

    Google Scholar 

  • Ciabatti M (1964) La dinamica della frana del Vaiont. Giornale di Geologia XXXII(I):139–154

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In Evans SG, Mugnozza GS, Strom A, Hermanns RL (eds) NATO ARW, landslides from massive rock slope failure. NATO science series, Earth Environ Sci 49:211–232

    Google Scholar 

  • Crosta GB, Frattini P, Imposimato S, Roddeman D (2007) 2D and 3D numerical modeling of long runout landslides – the Vajont case study. In: Crosta GB, Frattini P (eds) Landslides: from mapping to loss and risk estimation. IUSS Press, Pavia, pp 15–24

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J Geophys Res 114:F03020

    Article  Google Scholar 

  • Fritz HM (2002) Initial phase of landslide generated impulse waves. Thesis Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Swiss ETH No. 14'871. Swiss Federal Inst. Techn., Zürich, ISSN 0374–0056

    Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297

    Article  Google Scholar 

  • Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Heller V (2007) Landslide generated impulse waves: prediction of near field characteristics. Thesis, ETH Zürich, Swiss ETH No. 17531. Swiss Federal Inst. Techn., Zürich

    Google Scholar 

  • Heller V, Kinnear RD (2010) Discussion of “experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway” by Sælevik G, Jensen A, Pedersen G [Coastal Eng. 56 (2009) 897–906]. Coastal Eng 57:773–777

    Google Scholar 

  • Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geological observations of the failure surface. Tech Rep GL-85–5, 2 vols. Department of the Army, US Corps of Engineers, Washington, DC

    Google Scholar 

  • Huber A (1980) Schwallwellen in seen als floge von felssturzen (reservoir impulse waves caused by rockfall), technical report mitteilung 47, Lab. hydraulics, hydrology and glaciology, ETH

    Google Scholar 

  • Huber A, Hager WH (1997) Forecasting impulse waves in reservoirs, Comminsion Internationale des Grands Barrages, 19 Congres des Grand Barrages. Florence 1997:993–1005

    Google Scholar 

  • Jiang L, LeBlond PH (1993) Numerical modeling of an underwater Bingham plastic mudslide and the wave which it generates. J Geophys Res 98:304–317

    Article  Google Scholar 

  • Kamphuis JW, Bowering RJ (1970) Impulse waves generated by landslide. In: Proceedings of 12th coastal engineering conference, pp 575–588

    Google Scholar 

  • Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955

    Article  Google Scholar 

  • Lynett P, Liu PL-F (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110:C03006, 16 pp., doi: 10.1029/2004JC002443

  • Miller D (1960) Giant waves in Lituya Bay Alaska. USGS Prof Paper 354-C:51–83

    Google Scholar 

  • Müller L (1964) The rock slide in the Vaiont valley. Rock Mech Eng Geol 2(3/4):148–212

    Google Scholar 

  • Müller D (1995) Auflaufen und uberschwappen von impulswellen an talsperren (run-up and overtopping of impulse waves at dams), technical report mitteilung 137, Lab. of hydraulics, hydrology and glaciology, ETH

    Google Scholar 

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazard Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656

    Article  Google Scholar 

  • Roddeman DG (2008) TOCHNOG user’s manual. FEAT, 255 pp., www.feat.nl/manuals/user/user.html

  • Rossi D, Semenza E (1965) Carte geologiche del versante settentrionale del M. Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, Scala 1:5000, Ist. Geologia Universit`a di Ferrara, 2 Maps

    Google Scholar 

  • Sælevik G, Jensen A, Pedersen G (2009) Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coastal Eng 56(9):897–906

    Article  Google Scholar 

  • Semenza E (1965) Sintesi degli studi geologici sulla frana del Vaiont dal 1959 al 1964. Mem Mus Trident Sci Nat A XXIX–XXX(16):1–51

    Google Scholar 

  • Semenza E, Ghirotti M (2000) History of 1963 Vaiont Slide. The importance of the geological factors to recognise the ancient landslide. Bull Eng Geol Environ 59:87–97

    Article  Google Scholar 

  • Sitar N, MacLaughlin MM, Doolin DM (2005) Influence of kinematics on landslide mobility and failure mode. J Geotech Geoenviron Eng 131(6):716–728

    Article  Google Scholar 

  • Skempton AW (1966) Bedding-plane slip, residual strength and the Vaiont landslide. Géotechnique XV(1):82–84

    Article  Google Scholar 

  • Tika Th E, Hutchinson JN (1999) Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique 49(1):59–74

    Article  Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analyzed through numerical simulations. Bull Volcanol 68:462–470

    Article  Google Scholar 

  • Vardoulakis I (2000) Catastrophic landslides due to frictional heating of the failure plane. Mech Coh Frict Mat 5:443–467

    Article  Google Scholar 

  • Ward SN, Day S (2003) Ritter Island Volcano—lateral collapse and the tsunami of 1888. Geophys J Int 154:891–902

    Article  Google Scholar 

  • Zweifel, A. (2004). Impulswellen: Effekte der Rutschdichte und der Wassertiefe. Ph.D thesis, ETH Zurich, Zurich

    Google Scholar 

Download references

Acknowledgments

This study has been partially funded by the EC Safeland Project, GA No.: 226479, Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni B. Crosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crosta, G.B., Imposimato, S., Roddeman, D. (2013). Interaction of Landslide Mass and Water Resulting in Impulse Waves. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31427-8_6

Download citation

Publish with us

Policies and ethics