Interaction of Landslide Mass and Water Resulting in Impulse Waves

  • Giovanni B. CrostaEmail author
  • Silvia Imposimato
  • Dennis Roddeman


Landslides can occur in different environments and can interact with water basins of different characteristics. The transition from subaerial to subaqueous conditions can strongly control the landslide evolution and the generation of impulse waves, and therefore the final hazard zonation. Modelling the landslide spreading, the impact with the water surface and the generation of the impulse wave is a challenging work. We verify the capabilities of a fully 2D FEM approach to perform such a modelling and to analyse near-field evolution. To this aim we simulate the Vajont rockslide and the consequent impulse wave, and some laboratory tests available in the literature.


Rock avalanches Impulse wave Tsunami Modeling FEM Granular flow 



This study has been partially funded by the EC Safeland Project, GA No.: 226479, Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies.


  1. Abadie S, Morichon D, Grilli S, Glockner S (2010) Numerical simulation of waves generated by landslides using a multiple-fluid-Navier–Stokes model. Coastal Eng 57:779–794CrossRefGoogle Scholar
  2. Blikra L, Longva O, Harbitz C, Løvholt F (2005) Quantification of rock-avalanche and tsunami hazard in storfjorden, western norway. In: Senneset K, Flaate K, Larsen JO (eds) Landslides and Avalanches, ICFL 2005 Norway. Taylor & Francis, London, pp 57–64Google Scholar
  3. Broili L (1967) New knowledge on the geomorphology of the Vaiont Slide slip surfaces. Rock Mech Eng Geol J Int Soc Rock Mech V(1):38–88Google Scholar
  4. Ciabatti M (1964) La dinamica della frana del Vaiont. Giornale di Geologia XXXII(I):139–154Google Scholar
  5. Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In Evans SG, Mugnozza GS, Strom A, Hermanns RL (eds) NATO ARW, landslides from massive rock slope failure. NATO science series, Earth Environ Sci 49:211–232Google Scholar
  6. Crosta GB, Frattini P, Imposimato S, Roddeman D (2007) 2D and 3D numerical modeling of long runout landslides – the Vajont case study. In: Crosta GB, Frattini P (eds) Landslides: from mapping to loss and risk estimation. IUSS Press, Pavia, pp 15–24Google Scholar
  7. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J Geophys Res 114:F03020CrossRefGoogle Scholar
  8. Fritz HM (2002) Initial phase of landslide generated impulse waves. Thesis Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Swiss ETH No. 14'871. Swiss Federal Inst. Techn., Zürich, ISSN 0374–0056Google Scholar
  9. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297CrossRefGoogle Scholar
  10. Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313CrossRefGoogle Scholar
  11. Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21CrossRefGoogle Scholar
  12. Heller V (2007) Landslide generated impulse waves: prediction of near field characteristics. Thesis, ETH Zürich, Swiss ETH No. 17531. Swiss Federal Inst. Techn., ZürichGoogle Scholar
  13. Heller V, Kinnear RD (2010) Discussion of “experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway” by Sælevik G, Jensen A, Pedersen G [Coastal Eng. 56 (2009) 897–906]. Coastal Eng 57:773–777Google Scholar
  14. Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geological observations of the failure surface. Tech Rep GL-85–5, 2 vols. Department of the Army, US Corps of Engineers, Washington, DCGoogle Scholar
  15. Huber A (1980) Schwallwellen in seen als floge von felssturzen (reservoir impulse waves caused by rockfall), technical report mitteilung 47, Lab. hydraulics, hydrology and glaciology, ETHGoogle Scholar
  16. Huber A, Hager WH (1997) Forecasting impulse waves in reservoirs, Comminsion Internationale des Grands Barrages, 19 Congres des Grand Barrages. Florence 1997:993–1005Google Scholar
  17. Jiang L, LeBlond PH (1993) Numerical modeling of an underwater Bingham plastic mudslide and the wave which it generates. J Geophys Res 98:304–317CrossRefGoogle Scholar
  18. Kamphuis JW, Bowering RJ (1970) Impulse waves generated by landslide. In: Proceedings of 12th coastal engineering conference, pp 575–588Google Scholar
  19. Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955CrossRefGoogle Scholar
  20. Lynett P, Liu PL-F (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110:C03006, 16 pp., doi:  10.1029/2004JC002443
  21. Miller D (1960) Giant waves in Lituya Bay Alaska. USGS Prof Paper 354-C:51–83Google Scholar
  22. Müller L (1964) The rock slide in the Vaiont valley. Rock Mech Eng Geol 2(3/4):148–212Google Scholar
  23. Müller D (1995) Auflaufen und uberschwappen von impulswellen an talsperren (run-up and overtopping of impulse waves at dams), technical report mitteilung 137, Lab. of hydraulics, hydrology and glaciology, ETHGoogle Scholar
  24. Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazard Earth Syst Sci 5:733–740CrossRefGoogle Scholar
  25. Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656CrossRefGoogle Scholar
  26. Roddeman DG (2008) TOCHNOG user’s manual. FEAT, 255 pp.,
  27. Rossi D, Semenza E (1965) Carte geologiche del versante settentrionale del M. Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, Scala 1:5000, Ist. Geologia Universit`a di Ferrara, 2 MapsGoogle Scholar
  28. Sælevik G, Jensen A, Pedersen G (2009) Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coastal Eng 56(9):897–906CrossRefGoogle Scholar
  29. Semenza E (1965) Sintesi degli studi geologici sulla frana del Vaiont dal 1959 al 1964. Mem Mus Trident Sci Nat A XXIX–XXX(16):1–51Google Scholar
  30. Semenza E, Ghirotti M (2000) History of 1963 Vaiont Slide. The importance of the geological factors to recognise the ancient landslide. Bull Eng Geol Environ 59:87–97CrossRefGoogle Scholar
  31. Sitar N, MacLaughlin MM, Doolin DM (2005) Influence of kinematics on landslide mobility and failure mode. J Geotech Geoenviron Eng 131(6):716–728CrossRefGoogle Scholar
  32. Skempton AW (1966) Bedding-plane slip, residual strength and the Vaiont landslide. Géotechnique XV(1):82–84CrossRefGoogle Scholar
  33. Tika Th E, Hutchinson JN (1999) Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique 49(1):59–74CrossRefGoogle Scholar
  34. Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analyzed through numerical simulations. Bull Volcanol 68:462–470CrossRefGoogle Scholar
  35. Vardoulakis I (2000) Catastrophic landslides due to frictional heating of the failure plane. Mech Coh Frict Mat 5:443–467CrossRefGoogle Scholar
  36. Ward SN, Day S (2003) Ritter Island Volcano—lateral collapse and the tsunami of 1888. Geophys J Int 154:891–902CrossRefGoogle Scholar
  37. Zweifel, A. (2004). Impulswellen: Effekte der Rutschdichte und der Wassertiefe. Ph.D thesis, ETH Zurich, ZurichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giovanni B. Crosta
    • 1
    Email author
  • Silvia Imposimato
    • 2
  • Dennis Roddeman
    • 2
  1. 1.Dipartimento di Scienze Geologiche e GeotecnologieUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.FEATHeerlenThe Netherlands

Personalised recommendations