Skip to main content

Relationships Between Slope Instabilities, Active Tectonics and Drainage Systems: The Dúdar Landslide Case (Granada, Southern Spain)

  • Chapter
  • First Online:
  • 1946 Accesses

Abstract

A geomorphologic description of the Dúdar landslide (Granada, S Spain) has been carried out using a high-resolution digital elevation model derived from LIDAR (Light Detection and Ranging) data. We have analysed the significant changes that the landslide caused in the drainage system of the Aguas Blancas and Darro rivers, which in turn are the consequence of the tectonic activity of the north-eastern border of the Granada Basin. These modifications comprise river diversions and active incision within the body of the landslide, making it susceptible to future reactivations. A stability back-analysis of the landslide has been performed to identify the mechanism of failure and the most-likely triggering factors. This analysis shows that a low-to-moderate magnitude earthquake (Mw 5.0–6.5) related to the active faults in the Granada Basin seems to be the main triggering factor of the Dúdar landslide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97:511–530

    Article  Google Scholar 

  • Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 37:1–53

    Article  Google Scholar 

  • Azañón JM, Azor A, Cardenal Escarcena JF, Delgado García J, Delgado Marchal J, Gómez-Molina A, López-Chicano M, López-Sánchez JM, Mallorqui-Franquet JJ, Martín W, Mata de Castro E, Mateos RM, Nieto F, Peña-Ruano JA, Pérez-García JL, Puerma-Castillo M, Rodríguez-Fernández J, Teixidó-Ullod T, Tomás-Jover R, Tsige M, Yesares J (2006) Estudio sobre la predicción y mitigación de movimientos de ladera en vías de comunicación estratégicas de la Junta de Andalucía. IACT, CSIC-UGR (ed), Granada, 380p

    Google Scholar 

  • Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology 120(1–2):26–37

    Article  Google Scholar 

  • Azañón JM, Rodríguez-Peces MJ, García-Mayordomo J, de Justo-Alpañés JL (2011) Fallas activas y sismicidad en las partes altas de la ciudad de Granada: comportamiento dinámico de la Formación Alhambra. In: Proceedings of 4° Congreso Nacional de Ingeniería Sísmica, Granada, 18–20 May 2011, 7p

    Google Scholar 

  • Bindi D, Luzi L, Massa M, Pacor F (2010) Horizontal and vertical ground motion prediction equations derived from the Italian accelerometric archive (ITACA). Bull Earthq Eng 8:1209–1230

    Article  Google Scholar 

  • Davies TR, McSaveney MJ, Beetham RD (2006) Rapid block glides: slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Q J Eng Geol Hydrog 39:115–129

    Article  Google Scholar 

  • El Amrani Paaza N, Lamas F, Irigaray C, Chacón J (1998) Engineering geological characterization of Neogene marls in the Southeastern Granada Basin, Spain. Eng Geol 50:165–175

    Article  Google Scholar 

  • El Amrani Paaza N, Lamas F, Irigaray C, Chacón J, Oteo C (2000) The residual shear strength of Neogene marly soils in the Granada and Guadix basins, southeastern Spain. B Eng Geol Environ 58:99–105

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assesment and acceptable risk. Can Geotech J 31(2):261–272

    Article  Google Scholar 

  • Fernández J, Viseras C, Soria J (1996) Pliocene-Pleistocene infilling of the Granada and Guadix Basins (Betic Cordillera, Spain): the influence of allocyclic and autocyclic processes on the resulting stratigraphic organization. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain. Cambridge University Press, Cambridge, pp 366–371

    Chapter  Google Scholar 

  • García García F, Viseras C, Fernández J (1999) Organización secuencial de abanicos deltaicos controlados por la tectónica (Tortoniense superior, Cuenca de Granada, Cordillera Bética). Rev Soc Geol España 12(2):199–208

    Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229

    Article  Google Scholar 

  • IAEG Commission on Landslides (1990) Suggested nomenclature for landslides. Bull Eng Geol Environ 41:13–16

    Google Scholar 

  • Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261(3–4):578–589

    Article  Google Scholar 

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160

    Article  Google Scholar 

  • Oteo Mazo C (2001) Informe sobre el deslizamiento de Diezma (A-92) y las soluciones para estabilizarlo. Consejería de Obras Públicas y Urbanismo de la Junta de Andalucía, 60p

    Google Scholar 

  • Pánek T, Smolková V, Hradecký J, Kirchner K (2007) Landslide dams in the northern part of Czech Flysch Carpathians: geomorphic evidence and imprints. Stud Geomorphol Carpatho-Balc 41:77–96

    Google Scholar 

  • Pánek T, Hradecky J, Smolkova V, Silhan K, Minar J, Zernitskaya V (2010) The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphology 120(3–4):233–247

    Article  Google Scholar 

  • Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27(3):211–214

    Article  Google Scholar 

  • Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazard Earth Syst 8(2):377–407

    Article  Google Scholar 

  • Rocscience Inc (2003) Slide 5.0 user’s guide. Part I, Toronto, 199p

    Google Scholar 

  • Rodríguez-Fernández J, Sanz de Galdeano C (2006) Late orogenic intramontane basin development: the Granada basin, Betics (southern Spain). Basin Res 18:85–102

    Article  Google Scholar 

  • Rodríguez-Peces MJ (2010) Analysis of earthquake-triggered landslides in the South of Iberia: Testing the use of the Newmark’s method at different scales. Ph.D. thesis, University of Granada, Spain, 254 pp.

    Google Scholar 

  • Rodríguez-Peces MJ, García-Mayordomo J, Azañón JM, Insua Arévalo JM, Jiménez Pintor J (2011) Constraining pre-instrumental earthquake parameters from slope stability back-analysis: palaeoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Quater Int (in press). doi: 10.1016/j.quaint.2010.11.027

  • Sanz de Galdeano C, Peláez Montilla JA, López Casado C (2003) Seismic potential of the main active faults in the Granada basin (Southern Spain). Pure Appl Geophys 160:1537–1556

    Article  Google Scholar 

  • Skarlatoudis AA, Papazachos BN, Margaris N, Theodulidis C, Papaioannou I, Kalogeras EM, Scordilis EM, Karakostas V (2003) Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seismol Soc Am 93(6):2591–2603

    Article  Google Scholar 

  • Strasser M, Schlunegger F (2005) Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the 'Lluta collapse', northern Chile. Int J Earth Sci 94(3):433–446

    Article  Google Scholar 

  • Turnbull JM, Davies TRH (2006) A mass movement origin for cirques. Earth Surf Proc Land 31(9):1129–1148

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769

    Article  Google Scholar 

  • Weidinger JT (2006) Predesign, failure and displacement mechanisms of large rockslides in the Annapurna Himalayas, Nepal. Eng Geol 83(1–3):201–216

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by research projects CGL2008-03249/BTE, TOPOIBERIA CONSOLIDER-INGENIO2010 CSD2006-00041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Jesús Rodríguez-Peces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez-Peces, M.J., Pérez-Peña, J.V., Azañón, J.M., Jiménez-Gutierrez, A. (2013). Relationships Between Slope Instabilities, Active Tectonics and Drainage Systems: The Dúdar Landslide Case (Granada, Southern Spain). In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31427-8_43

Download citation

Publish with us

Policies and ethics