Relationships Between Slope Instabilities, Active Tectonics and Drainage Systems: The Dúdar Landslide Case (Granada, Southern Spain)

  • Martín Jesús Rodríguez-PecesEmail author
  • José Vicente Pérez-Peña
  • José Miguel Azañón
  • Alicia Jiménez-Gutierrez


A geomorphologic description of the Dúdar landslide (Granada, S Spain) has been carried out using a high-resolution digital elevation model derived from LIDAR (Light Detection and Ranging) data. We have analysed the significant changes that the landslide caused in the drainage system of the Aguas Blancas and Darro rivers, which in turn are the consequence of the tectonic activity of the north-eastern border of the Granada Basin. These modifications comprise river diversions and active incision within the body of the landslide, making it susceptible to future reactivations. A stability back-analysis of the landslide has been performed to identify the mechanism of failure and the most-likely triggering factors. This analysis shows that a low-to-moderate magnitude earthquake (Mw 5.0–6.5) related to the active faults in the Granada Basin seems to be the main triggering factor of the Dúdar landslide.


Active tectonic Betic Cordillera Drainage system Dúdar Landslide Newmark Seismicity 



This study was supported by research projects CGL2008-03249/BTE, TOPOIBERIA CONSOLIDER-INGENIO2010 CSD2006-00041.


  1. Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97:511–530CrossRefGoogle Scholar
  2. Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 37:1–53CrossRefGoogle Scholar
  3. Azañón JM, Azor A, Cardenal Escarcena JF, Delgado García J, Delgado Marchal J, Gómez-Molina A, López-Chicano M, López-Sánchez JM, Mallorqui-Franquet JJ, Martín W, Mata de Castro E, Mateos RM, Nieto F, Peña-Ruano JA, Pérez-García JL, Puerma-Castillo M, Rodríguez-Fernández J, Teixidó-Ullod T, Tomás-Jover R, Tsige M, Yesares J (2006) Estudio sobre la predicción y mitigación de movimientos de ladera en vías de comunicación estratégicas de la Junta de Andalucía. IACT, CSIC-UGR (ed), Granada, 380pGoogle Scholar
  4. Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology 120(1–2):26–37CrossRefGoogle Scholar
  5. Azañón JM, Rodríguez-Peces MJ, García-Mayordomo J, de Justo-Alpañés JL (2011) Fallas activas y sismicidad en las partes altas de la ciudad de Granada: comportamiento dinámico de la Formación Alhambra. In: Proceedings of 4° Congreso Nacional de Ingeniería Sísmica, Granada, 18–20 May 2011, 7pGoogle Scholar
  6. Bindi D, Luzi L, Massa M, Pacor F (2010) Horizontal and vertical ground motion prediction equations derived from the Italian accelerometric archive (ITACA). Bull Earthq Eng 8:1209–1230CrossRefGoogle Scholar
  7. Davies TR, McSaveney MJ, Beetham RD (2006) Rapid block glides: slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Q J Eng Geol Hydrog 39:115–129CrossRefGoogle Scholar
  8. El Amrani Paaza N, Lamas F, Irigaray C, Chacón J (1998) Engineering geological characterization of Neogene marls in the Southeastern Granada Basin, Spain. Eng Geol 50:165–175CrossRefGoogle Scholar
  9. El Amrani Paaza N, Lamas F, Irigaray C, Chacón J, Oteo C (2000) The residual shear strength of Neogene marly soils in the Granada and Guadix basins, southeastern Spain. B Eng Geol Environ 58:99–105CrossRefGoogle Scholar
  10. Fell R (1994) Landslide risk assesment and acceptable risk. Can Geotech J 31(2):261–272CrossRefGoogle Scholar
  11. Fernández J, Viseras C, Soria J (1996) Pliocene-Pleistocene infilling of the Granada and Guadix Basins (Betic Cordillera, Spain): the influence of allocyclic and autocyclic processes on the resulting stratigraphic organization. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain. Cambridge University Press, Cambridge, pp 366–371CrossRefGoogle Scholar
  12. García García F, Viseras C, Fernández J (1999) Organización secuencial de abanicos deltaicos controlados por la tectónica (Tortoniense superior, Cuenca de Granada, Cordillera Bética). Rev Soc Geol España 12(2):199–208Google Scholar
  13. Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229CrossRefGoogle Scholar
  14. IAEG Commission on Landslides (1990) Suggested nomenclature for landslides. Bull Eng Geol Environ 41:13–16Google Scholar
  15. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261(3–4):578–589CrossRefGoogle Scholar
  16. Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160CrossRefGoogle Scholar
  17. Oteo Mazo C (2001) Informe sobre el deslizamiento de Diezma (A-92) y las soluciones para estabilizarlo. Consejería de Obras Públicas y Urbanismo de la Junta de Andalucía, 60pGoogle Scholar
  18. Pánek T, Smolková V, Hradecký J, Kirchner K (2007) Landslide dams in the northern part of Czech Flysch Carpathians: geomorphic evidence and imprints. Stud Geomorphol Carpatho-Balc 41:77–96Google Scholar
  19. Pánek T, Hradecky J, Smolkova V, Silhan K, Minar J, Zernitskaya V (2010) The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphology 120(3–4):233–247CrossRefGoogle Scholar
  20. Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27(3):211–214CrossRefGoogle Scholar
  21. Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazard Earth Syst 8(2):377–407CrossRefGoogle Scholar
  22. Rocscience Inc (2003) Slide 5.0 user’s guide. Part I, Toronto, 199pGoogle Scholar
  23. Rodríguez-Fernández J, Sanz de Galdeano C (2006) Late orogenic intramontane basin development: the Granada basin, Betics (southern Spain). Basin Res 18:85–102CrossRefGoogle Scholar
  24. Rodríguez-Peces MJ (2010) Analysis of earthquake-triggered landslides in the South of Iberia: Testing the use of the Newmark’s method at different scales. Ph.D. thesis, University of Granada, Spain, 254 pp.Google Scholar
  25. Rodríguez-Peces MJ, García-Mayordomo J, Azañón JM, Insua Arévalo JM, Jiménez Pintor J (2011) Constraining pre-instrumental earthquake parameters from slope stability back-analysis: palaeoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Quater Int (in press). doi:  10.1016/j.quaint.2010.11.027
  26. Sanz de Galdeano C, Peláez Montilla JA, López Casado C (2003) Seismic potential of the main active faults in the Granada basin (Southern Spain). Pure Appl Geophys 160:1537–1556CrossRefGoogle Scholar
  27. Skarlatoudis AA, Papazachos BN, Margaris N, Theodulidis C, Papaioannou I, Kalogeras EM, Scordilis EM, Karakostas V (2003) Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seismol Soc Am 93(6):2591–2603CrossRefGoogle Scholar
  28. Strasser M, Schlunegger F (2005) Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the 'Lluta collapse', northern Chile. Int J Earth Sci 94(3):433–446CrossRefGoogle Scholar
  29. Turnbull JM, Davies TRH (2006) A mass movement origin for cirques. Earth Surf Proc Land 31(9):1129–1148CrossRefGoogle Scholar
  30. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769CrossRefGoogle Scholar
  31. Weidinger JT (2006) Predesign, failure and displacement mechanisms of large rockslides in the Annapurna Himalayas, Nepal. Eng Geol 83(1–3):201–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martín Jesús Rodríguez-Peces
    • 1
    Email author
  • José Vicente Pérez-Peña
    • 2
  • José Miguel Azañón
    • 2
    • 3
  • Alicia Jiménez-Gutierrez
    • 2
  1. 1.Department of GeodynamicsUniversity Complutense of MadridMadridSpain
  2. 2.Department of GeodynamicsUniversity of GranadaGranadaSpain
  3. 3.Instituto Andaluz de Ciencias de la Tierra (UGR-CSIC)GranadaSpain

Personalised recommendations