Slope Stability of Continental Megalandslides

  • Nguyen Anh TuanEmail author
  • José Darrozes
  • Jean-Claude Soula
  • Marianne Saillard
  • Frédéric Christophoul
  • Nicole Guerrero
  • Pierre Courjeault-Radé


Continental megalandslides, although rare, are found in various morphological settings including mountain fronts and valley sides with steep (> 30°) to shallow (<3°) slopes, under climates varying from high-precipitation temperate to hyperarid, and are associated with poorly active tectonics as well as hyper-active tectonics with frequent and very high-magnitude (≥ Mw 8) earthquakes. All but one (Mayunmarca, 25 April 1974) are pre-historic with ages ranging from 3.5 Ma to 9 ky BP.

Static and dynamic slope stability analyses show that in all cases the slope will remain stable when using values of effective cohesion and angle of internal friction for hard rocks. It appears that the studied megalandslides could not have formed without the presence of accurately oriented pre-existing discontinuities, including bedding, tectonic fractures, foliation and intrusive contacts. With such discontinuities being present, steep-sloping megalandslides may have formed with no help of seismic shaking. In any case, three of the four studied shallow-sloping megalandslides require high to very high magnitude earthquakes.

The large discrepancies between the Arias intensities predicted by the different attenuations relationships established when passing from moderate/high magnitude domains to very high magnitude domains show that megalandslides could hardly be used as paleomagnitude indicators.


Megalandslides stability analyses earthquakes paleo magnitude 


  1. Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656CrossRefGoogle Scholar
  2. Barton N (1973) A review of the shear strength of filled discontinuities in rocks. Fjellspregningsteknikk, Bergmekanikk, Oslo, Tapir Press, Trondheim, pp 19.1–19.38Google Scholar
  3. Brückl EP (2001) Cause-effect models of large landslides. Nat Hazards 23:291–314CrossRefGoogle Scholar
  4. Brückl E, Parotidis M (2005) Prediction of slope instabilities due to deep-seated gravitational creep. Nat Hazards Earth Syst Sci 5:155–172CrossRefGoogle Scholar
  5. Campbell KW (1989) Empirical prediction of near-source ground motion for the Diablo Canyon power plant site, San Luis Obispo County, California. US Geological survey, open-file report. pp 89484Google Scholar
  6. Darrozes J, Pinto L, Inglès J, Soula JC, Maire E, Courjault-Radé P, Hérail G (2002) Origin of the paleolandslide of Tarapaca (North Chile, Andean belt). Geophysical research abstract (Abstract EGS02-A-03 136)Google Scholar
  7. Darrozes J, Soula JC, Inglès J, Riquelme R (2007) From paleo to possible present-day large-scale landslide. A generalized Newmark approach of the Tarapaca Landslide (northern Chile). 4th International conference on earthquake geotechnical engineering. Paper n° 1427Google Scholar
  8. Del Gaudio V, Wasowski J (2004) Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (southern Italy). Soil Dyn Earthq Eng 24:915–928CrossRefGoogle Scholar
  9. Del Gaudio V, Pierri P, Wasowski J (2003) An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bull Seismol Soc Am 93:557–569CrossRefGoogle Scholar
  10. Florensov NA, Solonenko VP (ed) (1963) The Gobi-Altai earthquake. Akademiya Nauk USSR, Moscow, 391 p [in Russian] (English translation by Israel Program for Scientific Translation) Jerusalem 1965, 424 pGoogle Scholar
  11. Fort M (2000) Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal). Quatern Int 65/66:101–119CrossRefGoogle Scholar
  12. Gregory-Wodzicki KM (2000) Uplift history of Central and Northern Andes: A review. Geol Soc Am Bull 112:1091–1105CrossRefGoogle Scholar
  13. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071CrossRefGoogle Scholar
  14. Hermanns RL, Blikra LH, Naumann M, Nilsen B, Panthi KK, Stromeyer D, Longva O (2006) Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng Geol 83:94–108CrossRefGoogle Scholar
  15. Hewitt K (1998) Catastrophic landslides and their effect on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26:47–80CrossRefGoogle Scholar
  16. Hoek E, Bray JW (1981) Rock slope engineering. Institution of Mining and Metallurgy, London, p 358Google Scholar
  17. van Husen D (1997) LGM and late-glacial fluctuations in the eastern Alps. Quatern Int 38/39:109–118CrossRefGoogle Scholar
  18. Ibetsberger HJ (1996) The Tsergo Ri landslide: an uncommon area of high morphology activity in the Langthang valley Nepal. Tectonophysics 260:85–93CrossRefGoogle Scholar
  19. Inglès J, Darrozes J, Soula J-C (2005) Effects of vertical component of ground shaking on earthquake-induced landslides displacements using generalized Newmark’s analysis. Eng Geol 86:134–147CrossRefGoogle Scholar
  20. Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event: relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the central Alps (Tyrol, Austria). Z. Gletsch. kd. Glazialgeol. 34/1: 57–68Google Scholar
  21. Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009a) Latest Pleistocene and Holocene glacier variations in the European Alps. Quatern Sci Rev 28:2137–2149CrossRefGoogle Scholar
  22. Ivy-Ochs S, Poschinger AV, Synal H-A, Maisch M (2009b) Surface exposure dating of the Flims landslide, Graubünden Switzerland. Geomorphology 103:104–112CrossRefGoogle Scholar
  23. Jibson RW, Keefer DK (1993) Analysis of the seismic origin of landslides – Examples of the New Madrid seismic zone. Geol Soc Am Bull 105:421–436CrossRefGoogle Scholar
  24. Jibson RW (1993) Predicting earthquake-induced landslide displacement using Newmark’s sliding block analysis. Transport Res Rec 1411:9–17Google Scholar
  25. Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard map: an example from the Los Ageles, California, area. US Geological survey open file report. pp 98–113Google Scholar
  26. Kanamori H (1977) The energy release in great erthquakes. J Geophys Res 82:2981–2987CrossRefGoogle Scholar
  27. Kojan E, Hutchinson JN (1978) Mayunmarca rockslide and debris flow, Peru. In: Voight B (ed) Rockslides and avalanches, 1. Natural phenomena. Elsevier, Amsterdam, Oxford, New York, pp 315–361CrossRefGoogle Scholar
  28. Kubik PW, Ivy-Ochs S, Masarik J, Frank M, Schlüchter C (1998) 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of Köfels, Ötz Valley Austria. Earth Planet Sci Lett 161:231–141CrossRefGoogle Scholar
  29. Magny M, Guiot J, Schoellammer P (2001) Qualitative reconstruction of Younger Dryas to Mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quatern Res 56:170–180CrossRefGoogle Scholar
  30. Moon V, Simpson CJ (2002) Large-scale mass wasting in ancient volcanic material. Eng Geol 64:41–64CrossRefGoogle Scholar
  31. Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–159CrossRefGoogle Scholar
  32. Okal EA (1976) A surface-wave investigation of the rupture mechanism of the Gobi-Altai (December 4, 1957) earthquake. Phys Earth Plan Interiors 12:319–328CrossRefGoogle Scholar
  33. Pánek T, Hradecký J, Smolková V, Šilhán K (2008) Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology 95:449–473CrossRefGoogle Scholar
  34. Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27:211–214CrossRefGoogle Scholar
  35. Pollet N (2004) Mouvements gravitaires rapides des grandes masses rocheuses : apport des observations de terrain à la compréhension des processus de propagation et de dépôt. Application aux cas de la Madeleine (Savoie, France), Flims (Grisons, Suisse) et Köfels (Tyrol, Autriche). Thèse, Ecole nationale des Ponts et Chaussées, Paris.
  36. Pollet N, Cojean R, Couture R, Schneider J-L, Strom AL, Voirin C, Wassmer P (2005) A slab-on-slab model for the flims rockslide (Swiss Alps). Canadian Geotech J 42:587–600CrossRefGoogle Scholar
  37. Poschinger AV, Wassmer P, Maisch M (2006) The flims rockslide: history of interpretation and new insight. In: Evans SG (ed) Landslides from massive rock slope failure. Springer, Dordrecht, pp 239–356Google Scholar
  38. Pritchard, Simons M, Rogen PA, Hensley S, Webb FH (2002) Coseismic slip from the July 30, 1995, Mw = 8.1 Antofagasta, Chile earthquake as constrained by InSAR and GPS observations. Geophys J Int 150:362–376CrossRefGoogle Scholar
  39. Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58:337–351CrossRefGoogle Scholar
  40. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of non stationary earthquake ground motion. Bull Seismol Soc Am 86:337–352Google Scholar
  41. Schramm JM, Weidinger JT, Ibetsberger HJ (1998) Petrologic and structural control on geomorphology of prehistoric Tsergo Ri slope failure, Lanthang Himal Nepal. Geomorphology 26:107–121CrossRefGoogle Scholar
  42. Skempton AV, Hutchinson JN (1969) Stability of natural slopes and embankment foundations. State of art report, 7th Conference Soil Mechanics and Foundation Engineering. Mexico, pp 291–335Google Scholar
  43. Sörensen S-A, Bauer B (2003) On the dynamics of the Köfels sturzstrom. Geomorphology 54:11–19CrossRefGoogle Scholar
  44. Stafford PJ, Berill JB, Pettinga JR (2009) New predictive equations for Arias intensity from crustal earthquakes in New Zealand. J Seismol 13:31–52CrossRefGoogle Scholar
  45. Stässer M, Schlunegger F (2005) Erosional processes, topographic length-scale and geomorphic evolution in arid climatic environments: the ‘Lluta collapse’, northern Chile. Int J Earth Sci 94:433–446CrossRefGoogle Scholar
  46. Travasarou T, Bray JD, Abrahamson NA (2003) Empirical attenuation relationship for Arias Intensity. Earthq Eng Struct Dyn 32:1133–1155CrossRefGoogle Scholar
  47. Voight B (ed) (1978) Rockslides and avalanches. I. Natural phenomena. Elsevier, Amsterdam-Oxford-New York, p 833Google Scholar
  48. Vollweiler N, Scholz D, Mühlinghaus C, Mangini A, Spötl C (2006) A precisely dated climate record for the last 9kyr from three high alpine stalagmites, Spannagel Cave Austria. Geophys Res Lett 33:L20703CrossRefGoogle Scholar
  49. Weidinger JT (2006) Predesign, failure and displacement mechanisms of large rockslides in the Anapurnas Himalayas Nepal. Eng Geol 83:201–216CrossRefGoogle Scholar
  50. Weidinger JT, Schramm JM, Surenian R (1996) On preparatory causal factors initiating the prehistoric Tsergo Ri landslide (Langthang Himal, Nepal). Tectonophysics 260:95–107CrossRefGoogle Scholar
  51. Wieczorek GF, Wilson RC, Harp EL (1985) Map showing slope sability during earthquakes of San Mateo County, California. U.S. Geological survey miscellaneous geologic investigation map I-1257E, scale 1.62,500Google Scholar
  52. Wilson RC, Keefer DK (1985) Predicting areal limits of earthquake-induced landsliding. In: Ziony JI (ed), Evaluating earthquake Hazards in the Los Angeles region – An Earth-science perspective. US Geological survey professional paper 1360, 316–345Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nguyen Anh Tuan
    • 1
    Email author
  • José Darrozes
    • 1
  • Jean-Claude Soula
    • 1
  • Marianne Saillard
    • 2
  • Frédéric Christophoul
    • 1
  • Nicole Guerrero
    • 1
  • Pierre Courjeault-Radé
    • 1
  1. 1.Géosciences, environnement, Toulouse (OMP, CNRS, UPS)ToulouseFrance
  2. 2.Université Nice Sophia AntipolisNice Cédex 2France

Personalised recommendations