Submarine Landslides and Their Consequences: What Do We Know, What Can We Do?

  • Maarten VannesteEmail author
  • Carl Fredrik Forsberg
  • Sylfest Glimsdal
  • Carl B. Harbitz
  • Dieter Issler
  • Tore J. Kvalstad
  • Finn Løvholt
  • Farrokh Nadim


The threats posed by submarine landslides to human civilization are the disappearance of valuable land near the shoreline, the destruction of seafloor installations like cables, pipelines or oil wells, and – most importantly – the devastation of coastal areas by landslide-generated tsunamis. Assessing and mitigating these hazards almost invariably implies the estimation of risk in situations where the probabilities associated with different scenarios are difficult to quantify. However, substantial progress has been made in the understanding of the geological processes and physical mechanisms operating at different stages of a submarine landslide event. This paper briefly reviews the state-of-the-art and points out why knowledge and methods from several disciplines of the physical sciences need to be combined to find solutions to the geotechnical engineering challenges from submarine landslides. A number of references to relevant case studies are also provided.


Submarine landslides Triggering Flow rheology Tsunami Monitoring Mitigation Integrated geosciences 



The authors thank Norsk Hydro/Statoil for releasing the Ormen Lange and Storegga Slide data. We are grateful to F. V. De Blasio, A. Elverhøi, K. Høeg, J. G. Marr, G. Parker, A. Solheim, J. M. Strout and A. Zakeri for stimulating discussions and enjoyable collaboration on submarine mass flows, pore pressure measurements and submarine slope failures in general. We kindly acknowledge R. Urgeles, J. Locat and P. Mazzanti for inviting NGI and ICG to write this keynote paper, and their patience while drafting it. Writing this paper was made possible by an internal grant from NGI’s publications fund. This is paper no. 361 from the International Centre for Geohazards.


  1. Assier-Rzadkiewicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modelling of a landslide-generated tsunami: the 1979 nice event. Pure Appl Geophys 157(19):1707–1727CrossRefGoogle Scholar
  2. Bardet J-P, Synolakis C, Davis H, Imamura F, Okal E (2003) Landslide tsunamis: recent findings and research directions. Pure Appl Geophys 160:1793–1809CrossRefGoogle Scholar
  3. Bea RG, Aurora R (1983) Design of pipelines in mudslide areas. J Petrol Technol 35(11):1985–1995Google Scholar
  4. Bondevik S, Løvholt F, Harbitz CB, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga slide tsunami – comparing field observations with numerical simulations. Mar Petrol Geol 22(1–2):195–208CrossRefGoogle Scholar
  5. Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga slide. Mar Petrol Geol 22(1–2):11–19CrossRefGoogle Scholar
  6. Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213(1–4):9–72CrossRefGoogle Scholar
  7. Cassar C, Nicolas M, Pouliquen O (2005) Submarine granular flows down inclined planes. Phys Fluids 17:103301CrossRefGoogle Scholar
  8. Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the US Atlantic margin. Mar Geol 264:16–27CrossRefGoogle Scholar
  9. Dade WB, Huppert HE (1995) A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42:453–471CrossRefGoogle Scholar
  10. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64CrossRefGoogle Scholar
  11. De Blasio FV, Issler D, Elverhøi A, Harbitz CB, Ilstad T, Bryn P, Lien R, Løvholt F (2003) Dynamics, velocity and run-out of the giant Storegga slide. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer, Dordrecht/Boston/London, pp 223–230CrossRefGoogle Scholar
  12. De Blasio FV, Elverhøi A, Issler D, Harbitz CB, Bryn P, Lien R (2004) Flow models of natural debris flows originating from overconsolidated clay materials. Mar Geol 213(1–4):415–438Google Scholar
  13. De Blasio F, Elverhøi A, Issler D, Harbitz CB, Bryn P, Lien R (2005) On the dynamics of subaqueous clay rich gravity mass flows – the giant Storegga slide, Norway. Mar Petrol Geol 22(1–2):179–186CrossRefGoogle Scholar
  14. Drago M (2002) A coupled debris flow–turbidity current model. Ocean Eng 29(14):1769–1780CrossRefGoogle Scholar
  15. Elverhøi A, De Blasio FV, Butt FA, Issler D, Harbitz CB, Engvik L, Solheim A, Marr J (2002) Submarine mass-wasting on glacially influenced continental slopes – processes and dynamics. In: Dowdeswell JA, Cofaigh CÓ (eds) Glacier-influenced sedimentation on high-latitude continental margins. UK, London, pp 73–88Google Scholar
  16. Elverhøi A, Issler D, De Blasio FV, Ilstad T, Harbitz CB, Gauer P (2005) Emerging insights on the dynamics of submarine debris flows. Nat Hazard Earth Syst Sci 5:633–648CrossRefGoogle Scholar
  17. Elverhøi A, Breien H, De Blasio FV, Harbitz CB, Pagliardi M (2010) Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. 70th anniversary of Prof. Gjevik BN. Ocean Dynamics Special Issue. DOI  10.1007/s10236-010-0317-z
  18. Forsberg CF, Solheim A, Kvalstad TJ, Vaidya R, Mohanty S (2007) Slope instability and mass transport deposits on the Godavari river delta, east Indian margin, from a regional geological perspective. In: Lykousis V, Sakellariou D, Locat J (eds.) Proceedings 3rd international symposium on submarine mass movements and their consequences, Santorini, Greece. Springer, Dordrecht, The Netherlands, pp 19–28Google Scholar
  19. Gauer P, Elverhøi A, Issler D, De Blasio FV (2006) On numerical simulations of subaqueous slides: backcalculations of laboratory experiments of clay-rich slides. Norw J Geol 86:295–300Google Scholar
  20. Gauer P, Kvalstad TJ, Forsberg CF, Bryn P, Berg K (2005) The last phase of the Storegga slide: Simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Petrol Geol 22(1–2):171–178CrossRefGoogle Scholar
  21. Gisler G, Weaver R, Gittings ML (2006) SAGE calculations of the tsunami threat from La Palma. Sci Tsunami Hazard 24(4):288–300Google Scholar
  22. Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234CrossRefGoogle Scholar
  23. Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga Slides. Mar Geol 105:1–21CrossRefGoogle Scholar
  24. Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:249–258Google Scholar
  25. Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am J Sci 250:849–873CrossRefGoogle Scholar
  26. Ichinose GA, Anderson JG, Satake K, Schweickert RA, Lahren MM (2000) The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California-Nevada. Geophys Res Lett 27(8):1203–1206CrossRefGoogle Scholar
  27. Ilstad T, De Blasio FV, Elverhøi A, Harbitz CB, Engvik L, Longva O, Marr JG (2004) On the frontal dynamics and morphology of submarine debris flows. Mar Geol 213(1–4):481–497CrossRefGoogle Scholar
  28. Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flows with graphical user interface. Comput Geosci 27(6):717–729CrossRefGoogle Scholar
  29. Issler D, De Blasio FV, Elverhøi A, Bryn P, Lien R (2005) Scaling behaviour of clay-rich submarine debris flows. Mar Petrol Geol 22(1–2):187–194CrossRefGoogle Scholar
  30. Jeanjean P, Hill A, Taylor S (2003) The challenges of siting facilities along the Sigsbee Escarpment in the southern Green Canyon area of the Gulf of Mexico; framework for integrated studies. In: Proceedings of the offshore technology conference 2003, Houston, Texas. OTC No. 15156Google Scholar
  31. Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geophys Res 97(C8):12731–12744CrossRefGoogle Scholar
  32. Kajiura K (1963) The leading wave of a tsunami. Bull Earthqu Res Inst Tokyo Univ 41:535–571Google Scholar
  33. Kvalstad TJ, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005) The Storegga Slide: evaluation of triggering sources and slide mechanics. Mar Petrol Geol 22(1–2):245–256CrossRefGoogle Scholar
  34. L’Heureux J-S (2009) A multidisciplinary study of shoreline landslides: from geological development to geohazards assessment in the Bay of Trondheim, mid Norway. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, p 158Google Scholar
  35. L’Heureux J-S, Steiner A, Longva O, Chand S, Vanneste M, Kopf A, Haflidason H, Forsberg CF, Vardy ME (2011) Identification of weak layers and their role for the stability of slopes at Finneidfjord, northern Norway. In: Proceedings of the 5th international symposium on submarine mass movements and their consequences, Kyoto (Japan), 24–26 Oct 2011Google Scholar
  36. Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Petrol Geol 18(4):503–512CrossRefGoogle Scholar
  37. Løvholt F, Harbitz CB, Haugen KB (2005) A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Mar Petrol Geol 22:219–231CrossRefGoogle Scholar
  38. Løvholt F, Pedersen GK, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026CrossRefGoogle Scholar
  39. Lynett PJ, Borrero JC, Liu PL-F, Synolakis CE (2003) Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami. Pure Appl Geophys 160:2119–2146CrossRefGoogle Scholar
  40. Micallef A, Berndt C, Masson DG, Stow DAV (2008) Scale invariant characteristics of the Storegga slide and implications for large-scale submarine mass movements. Mar Geol 247:46–60CrossRefGoogle Scholar
  41. Mohrig D, Marr JG (2003) Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments. Mar Petrol Geol 20:883–899CrossRefGoogle Scholar
  42. Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110(3):387–394CrossRefGoogle Scholar
  43. Mosher D, Bigg S, LaPierre A (2006) 3D seismic versus multibeam sonar seafloor surface renderings for geohazard assessment: case examples from central Scotian Slope. The Leading Edge 2006:1484–1494CrossRefGoogle Scholar
  44. Necker F, Härtel C, Kleiser L, Meiburg E (2002) High-resolution simulations of particle-driven gravity currents. Int J Multiphase Flow 28(2):279–300CrossRefGoogle Scholar
  45. Nodine MC, Cheon JY, Wright SG, Gilbert RB (2007) Mudslides during hurricane Ivan and an assessment of potential for future mudslides in the Gulf of Mexico. Phase II Project report to MMS. MMS Project Number 552. Texas A&M University, OTRC Library No. 10/07C185Google Scholar
  46. Okal EA, Synolakis CE (2003) Field survey and numerical simulations: a theoretical comparison of tsunamis from dislocations and landslides. Pure Appl Geophys 160:2177–2188CrossRefGoogle Scholar
  47. Okal EA, Synolakis CE (2004) Source discriminants for near-field tsunamis. Geophys J Int 158:899–912CrossRefGoogle Scholar
  48. Pararas-Carayannis G (2004) Volcanic tsunami generating source mechanisms in the Eastern Caribbean region. Sci Tsunami Hazard 22(2):74–114Google Scholar
  49. Parker G, Fukushima Y, Pantin HM (1986) Self-accelerating turbidity currents. J Fluid Mech 171:145–181CrossRefGoogle Scholar
  50. Pedersen, G (2001) A note on tsunami generation by earthquakes. Preprint Series in Applied Mathematics 4, Department of Mathematics, University of Oslo, NorwayGoogle Scholar
  51. Piper DJW, Cochonat P, Morrison L (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake – initiation of debris flows and turbidity currents inferred from side scan sonar. Sedimentology 46:79–97CrossRefGoogle Scholar
  52. Ruff LJ (2003) Some aspects of energy balance and tsunami generation by earthquakes and landslides. Pure Appl Geophys 160:2155–2176CrossRefGoogle Scholar
  53. Schnellman M, Anselmetti FS, Giardini D, McKenzie J (2006) 15,000 years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geol Helv 99(3):409–428CrossRefGoogle Scholar
  54. Skaven-Haug S (1955) Undervannsskred i Trondheim havneområde [Submarine slides in the Trondheim harbour area, in Norwegian] Teknisk ukeblad, 1955(7): 133–144. (Also published in NGI Publication no. 7., 1955, Norwegian Geotechnical Institute, Norway)Google Scholar
  55. Skogseth R (1999) Turbiditetsstraumar langs eit skrått plan [Turbidity currents along an inclined plane, in Norwegian]. MSc Thesis, Geophysical Institute, University of Bergen, Bergen, NorwayGoogle Scholar
  56. Solheim A, Forsberg CF, Yang S, Kvalstad TJ, Vaidya RA, Mohanty S, Longva O, Rise L (2007) The role of geological setting and depositional history in offshore slope instability. Offshore Technology Conference 2006, Houston, TexasGoogle Scholar
  57. Strout JM, Tjelta TI (2005) In situ pore pressures: what is their significance and how can they be reliably measured? Mar Petrol Geol 22(1–2):275–285CrossRefGoogle Scholar
  58. Tappin D, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat Hazard Earth Syst Sci 8:243–266CrossRefGoogle Scholar
  59. Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the Ebro slope, NW Mediterranean. Mar Geol 226(3–4):185–206CrossRefGoogle Scholar
  60. Vanneste M, Harbitz CB, De Blasio FV, Glimsdal S, Mienert J, Elverhøi A (2011) Hinlopen-Yermak landslide, Arctic Ocean – geomorphology, landslide dynamics, and tsunami simulations. In: Shipp RC, Weimer P, Posamentier H, Posamentier H (eds) Mass-transport deposits in deepwater settings, vol 96, Society of Sedimentary Geology, Special Publication. Tulsa, SEPM, pp 509–527Google Scholar
  61. Vanneste M, L’Heureux J-S, Baeten N, Brendryen J, Vardy ME, Steiner A, Forsberg CF, Kvalstad TJ, Laberg JS, Chand S, Longva O, Rise L, Haflidason H, Hjelstuen BO, Forwick M, Morgan E, Lecomte I, Kopf A, Vorren TO, Reichel T (in press) Shallow landslides and their dynamics in coastal and deepwater environments, Norway. In: Proceedings of the 5th international symposium on submarine mass movements and their consequences. Kyoto, Japan, 24–26 Oct 2011Google Scholar
  62. Vanneste M, Mienert J, Bünz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet Sc Lett 245(1–2):373–388CrossRefGoogle Scholar
  63. Yeh H, Imamura F, Synolakis C, Tsuji Y, Liu P, Shi S (1993) The Flores Island Tsunami. Eos, Transactions, American Geophysical Union 74(33):369–373CrossRefGoogle Scholar
  64. Zakeri A (2008) Submarine debris flow impact on pipelines. Ph.D thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway. ISSN 1501–7710Google Scholar
  65. Zakeri A, Chi K, Hawlader B (2011) Centrifuge modelling of glide block and out-runner block impact on submarine pipelines. In: Proceedings of the offshore technology conference 2010, Houston, Texas. OTC paper 21256Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maarten Vanneste
    • 1
    Email author
  • Carl Fredrik Forsberg
    • 1
  • Sylfest Glimsdal
    • 1
  • Carl B. Harbitz
    • 1
  • Dieter Issler
    • 1
  • Tore J. Kvalstad
    • 1
  • Finn Løvholt
    • 1
  • Farrokh Nadim
    • 1
  1. 1.Norwegian Geotechnical Institute and International Centre for GeohazardsOsloNorway

Personalised recommendations