Skip to main content

Discrimination of Springs with Vision, Proprioception, and Artificial Skin Stretch Cues

  • Conference paper
Haptics: Perception, Devices, Mobility, and Communication (EuroHaptics 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7282))

Abstract

During upper-limb prosthesis use, proprioception is not available so visual cues are used to identify the location of the artificial limb. We investigate the efficacy of a skin stretch device for artificially relaying proprioception during a spring discrimination task, with the goal of enabling the task to be achieved in the absence of vision. In this study, intact users perceive the location of a virtual prosthetic limb using each of four sensory conditions: Vision, Proprioception, Skin Stretch, and Skin Stretch with Vision. For the conditions with skin stretch, a haptic device stretches the forearm skin by an amount proportional to the angular rotation of a virtual prosthetic limb. Sensory condition was not found to significantly influence task performance, exploration methods, or perceived usefulness. We conclude that, in the absence of vision, artificial skin stretch could be used by prosthesis wearers to obtain position/motion information and identify the behavior of a spring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, D.J., Heard, D.C.Y., Donovan, W.H.: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. Journal of Prosthetics and Orthotics 8(1), 2–11 (1996)

    Article  Google Scholar 

  2. Bark, K., Wheeler, J.W., Premakumar, S., Cutkosky, M.R.: Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In: Proceedings of the 16th International Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 71–78 (2008)

    Google Scholar 

  3. Binnard, M., Cutkosky, M.R.: Design by composition for layered manufacturing. Journal of Mechanical Design 122(1), 91–101 (2000)

    Article  Google Scholar 

  4. Cipriani, C., Zaccone, F., Micera, S., Carrozza, M.C.: On the shared control of an EMG-controlled prosthetic hand: Analysis of user-prosthesis interaction. IEEE Transactions on Robotics 24(1), 170–184 (2008)

    Article  Google Scholar 

  5. Cole, J.: Pride and a Daily Marathon. The MIT Press (1995)

    Google Scholar 

  6. Collins, D.F., Prochazka, A.: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. Journal of Physiology 496(3), 857–871 (1996)

    Google Scholar 

  7. Collins, D.F., Refshauge, K.M., Todd, G., Gandevia, S.C.: Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology 94(3), 1699–1706 (2005)

    Article  Google Scholar 

  8. Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(4), 468–472 (2005)

    Article  Google Scholar 

  9. Edin, B.B.: Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. Journal of Neurophysiology 92(6), 3233–3243 (2004)

    Article  Google Scholar 

  10. Gandevia, S.C., Smith, J.L., Crawford, M., Proske, U., Taylor, J.L.: Motor commands contribute to human position sense. Journal of Physiology 571(3), 703–710 (2006)

    Article  Google Scholar 

  11. Gleeson, B.T., Horschel, S.K., Provancher, W.R.: Communication of direction through lateral skin stretch at the fingertip. In: Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 172–179 (2009)

    Google Scholar 

  12. Gurari, N., Kuchenbecker, K.J., Okamura, A.M.: Stiffness discrimination with visual and proprioceptive cues. In: Proceedings of the Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 121–126 (2009)

    Google Scholar 

  13. Kaczmarek, K.A., Webster, J.G., Rita, P.B., Tompkins, W.J.: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering 38(1), 1–16 (1991)

    Article  Google Scholar 

  14. Kuiken, T.A., Marasco, P.D., Lock, B.A., Harden, R.N., Dewald, J.P.A.: Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proceedings of the National Academy of Sciences of the United States of America 104(50), 20061–20066 (2007)

    Article  Google Scholar 

  15. Kuschel, M., Luca, M.D., Buss, M., Klatzky, R.L.: Combination and integration in the perception of visual-haptic compliance information. IEEE Transactions on Haptics 99(4), 234–244 (2010)

    Article  Google Scholar 

  16. MacLean, K.E.: Putting haptics into the ambience. Transactions on Haptics 2(3), 123–135 (2009)

    Article  Google Scholar 

  17. McCloskey, D.I.: Kinesthetic sensibility. Physiological Reviews 58(4), 763–820 (1978)

    Google Scholar 

  18. Paljic, A., Burkhardt, J.M., Coquillart, S.: Evaluation of pseudo-haptic feedback for simulating torque: a comparison between isometric and elastic input devices. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Stiffness dscrimination isometric elastic haptic device, pp. 216–223 (2004)

    Google Scholar 

  19. Pressman, A., Welty, L.J., Karniel, A., Mussa-Ivaldi, F.A.: Perception of delayed stiffness. International Journal of Robotics Research 26(11-12), 1191–1203 (2007)

    Article  Google Scholar 

  20. Pylatiuk, C., Kargov, A., Schulz, S.: Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. Journal of Prosthetics and Orthotics 18(2), 57–61 (2006)

    Article  Google Scholar 

  21. Riso, R.R., Ignagni, A.R.: Electrocutaneous sensory augmentation affords more precise shoulder position command generation for control of FNS orthoses. In: Proceedings of the Annual Conference on Rehabilitation Technology, pp. 228–230 (1985)

    Google Scholar 

  22. Rohland, T.A.: Sensory feedback for powered limb prostheses. Medical and Biological Engineering and Computing 13(2), 300–301 (1975)

    Google Scholar 

  23. Roland, P.E., Ladegaard-Pedersen, H.: A quantitative analysis of sensations of tensions and of kinaesthesia in man. Brain: a Journal of Neurology 100(4), 671–692 (1977)

    Article  Google Scholar 

  24. Sainburg, R.L., Ghilardi, M.F., Poizner, H., Ghez, C.: Control of limb dynamics in normal subjects and patients without proprioception. Journal of Neurophysiology 73(2), 820–835 (1995)

    Google Scholar 

  25. Srinivasan, M.A., Beauregard, G.L., Brock, D.L.: The impact of visual information on the haptic perception of stiffness in virtual environments. In: Proceedings of the 5th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. American Society of Mechanical Engineers Dynamic Systems and Control Division, vol. 58, pp. 555–559 (1996)

    Google Scholar 

  26. Tan, H.Z., Durlach, N.I., Beauregard, G.L., Srinivasan, M.A.: Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Perception & Psychophysics 4(57), 495–510 (1995)

    Article  Google Scholar 

  27. Tiest, W.M.B., Kappers, A.M.L.: Cues for haptic perception of compliance. IEEE Transactions on Haptics 2(4), 189–199 (2009)

    Article  Google Scholar 

  28. Varadharajan, V., Klatzky, R., Unger, B., Swendsen, R., Hollis, R.: Haptic rendering and psychophysical evaluation of a virtual three-dimensional helical spring. In: Proceedings of the 16th International Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 57–64 (2008)

    Google Scholar 

  29. Wheeler, J., Bark, K., Savall, J., Cutkosky, M.: Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(1), 58–66 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurari, N., Wheeler, J., Shelton, A., Okamura, A.M. (2012). Discrimination of Springs with Vision, Proprioception, and Artificial Skin Stretch Cues. In: Isokoski, P., Springare, J. (eds) Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Computer Science, vol 7282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31401-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31401-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31400-1

  • Online ISBN: 978-3-642-31401-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics