Skip to main content

On the Classification of Two Center Orbits for Magical Black Holes

  • Conference paper
  • First Online:
Supersymmetric Gravity and Black Holes

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 142))

  • 763 Accesses

Abstract

We report on recent work [4] concerning the determination of the two-centered generic charge orbits of magical \(\mathcal{N} = 2\) and maximal \(\mathcal{N} = 8\) supergravity theories in four dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here U-duality is referred to as the “continuous” symmetries of [11]. Their discrete versions are the U-duality non-perturbative string theory symmetries introduced by Hull and Townsend [32].

  2. 2.

    As it holds for the magical \({J}_{3}^{\mathbb{R}}\) model, see Table I.

  3. 3.

    A necessary but not sufficient condition for Eq. (5.2) to hold is p < f, such that the p dyonic charge vectors can all be taken to be linearly independent.

  4. 4.

    Multi-center configurations with “small” constituents [5, 10, 29] can be treated as well, and they will be considered elsewhere.

  5. 5.

    In this respect, we observe that the N = 3 theory coupled to three vector multiplets, whose scalar manifold, SU(3, 3) ∕ S(U(3) ×U(3)), coincides with the one of the magic model based on \({J}_{3}^{\mathbb{C}}\), cannot be included in the discussion, since the bosonic field content of the two theories is different.

  6. 6.

    As mentioned above, the irreducible rank-1 cubic case (the so-called \(\mathcal{N} = 2\), d = 4 t 3 model, associated to the trivial degree-1 Jordan algebra ) has been treated in [26].

  7. 7.

    With respect to the treatment given in [36], we fix the overall normalization constant of the K-tensor to the value \(\xi = - \frac{1} {3\tau } = -\frac{f\left (f+1\right )} {6d}\), as needed for consistency reasons.

  8. 8.

    We remark that relation (5.87) characterizes \({\mathcal{Q}}_{abc}\) as the two-center generalisation of the so-called Freudenthal dual of the dyonic charge vector \({\mathcal{Q}}^{M}\), introduced (with a different normalisation) in [8]. Thus, \({\mathcal{Q}}_{abc}\) can be regarded as the (polynomial) two-center Freudenthal dual of the dyonic charge vector \({\mathcal{Q}}_{d}\). Furthermore, Eqs. (5.82), (5.86) and (5.97) imply that, under the formal interchange \({\mathcal{Q}}_{a}^{M} \leftrightarrow {\mathbb{C}}^{MN}{\mathcal{Q}}_{N\mid abc}\), I abcd is invariant and \(\mathcal{W}\leftrightarrow {\mathbf{I}}_{6}\).

References

  1. L. Andrianopoli, R. D’Auria, S. Ferrara, U-invariants, black hole entropy and fixed scalars. Phys. Lett. B403, 12 (1997). hep-th/9703156

    Google Scholar 

  2. L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal black holes in supergravity. Lect. Notes Phys. 737, 661 (2008). hep-th/0611345

    Google Scholar 

  3. L. Andrianopoli, R. D’Auria, S. Ferrara, P.A. Grassi, M. Trigiante, Exceptional \(\mathcal{N} = 6\) and \(\mathcal{N} = 2\) AdS 4 supergravity, and zero-center modules. J. High Energy Phys. 0904, 074 (2009). arXiv:0810.1214 (hep-th)

    Google Scholar 

  4. L. Andrianopoli, R. D’Auria, S. Ferrara, A. Marrani, M. Trigiante, Two-centered magical charge orbits. J. High Energy Phys. 1104, 041 (2011). (arXiv:1101.3496 (hep-th))

    Google Scholar 

  5. B. Bates, F. Denef, Exact Solutions for Supersymmetric Stationary Black Hole Composites. J. High Energy Phys. 1111, 127 (2011). hep-th/0304094

    Google Scholar 

  6. J.C. Baez, The octonions. Bull. Am. Math. Soc. 39, 145 (2001). math/0105155

    Google Scholar 

  7. S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A21, 5043 (2006). hep-th/0606209

    Google Scholar 

  8. L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a freudenthal dual. Phys. Rev. D80, 026003 (2009). arXiv:0903.5517 (hep-th)

    Google Scholar 

  9. G. Bossard, 1∕8 BPS Black Hole Composites. arXiv:1001.3157 (hep-th)

    Google Scholar 

  10. A. Castro, J. Simon, Deconstructing the D0-D6 system. J. High Energy Phys. 0905, 078 (2009). arXiv:0903.5523 (hep-th)

    Google Scholar 

  11. E. Cremmer, B. Julia, The \(\mathcal{N} = 8\) supergravity theory. 1. The lagrangian. Phys. Lett. B80, 48 (1978); E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B159, 141 (1979)

    Google Scholar 

  12. M. Cvetic, D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus. Phys. Rev. D53, 584 (1996), hep-th/9507090; M. Cvetic, A.A. Tseytlin, General class of BPS saturated dyonic black holes as exact superstring solutions. Phys. Lett. B366, 95 (1996). hep-th/9510097; M. Cvetic, A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes. Phys. Rev. D53, 5619 (1996); Erratum-ibid. D55, 3907 (1997), hep-th/9512031

    Google Scholar 

  13. J.R. David, On walls of marginal stability in \(\mathcal{N} = 2\) string theories. J. High Energy Phys. 0908, 054 (2009). arXiv:0905.4115 (hep-th)

    Google Scholar 

  14. B. de Wit, H. Samtleben, M. Trigiante, On lagrangians and gaugings of maximal supergravities. Nucl. Phys. B655, 93 (2003). hep-th/0212239

    Google Scholar 

  15. B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structures of special geometries. Nucl. Phys. B400, 463 (1993). hep-th/9210068

    Google Scholar 

  16. F. Denef, Supergravity flows and D-brane stability. J. High Energy Phys. 0008, 050 (2000). hep-th/0005049

    Google Scholar 

  17. F. Denef, G.W. Moore, Split States, Entropy Enigmas, Holes and Halos. hep-th/0702146; J. High Energy Phys. 1111, 129 (2011). F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken, X. Yin, Black Hole Deconstruction. hep-th/0703252; J. High Energy Phys. 1203, 071 (2012). F. Denef, G.W. Moore, How many black holes fit on the head of a pin? Gen. Relat. Gravit. 39, 1539 (2007). arXiv:0705.2564 (hep-th)

    Google Scholar 

  18. F. Denef, B.R. Greene, M. Raugas, Split attractor flows and the spectrum of BPS D-branes on the quintic. J. High Energy Phys. 0105, 012 (2001). hep-th/0101135

    Google Scholar 

  19. M.J. Duff, J.T. Liu, J. Rahmfeld, Four-dimensional string/string/string triality. Nucl. Phys. B459, 125 (1996). hep-th/9508094

    Google Scholar 

  20. S. Ferrara, M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A13, 2075 (1998). hep-th/9708025

    Google Scholar 

  21. S. Ferrara, A. Marrani, Matrix norms, BPS bounds and marginal stability in \(\mathcal{N} = 8\) supergravity. J. High Energy Phys. (2010, in press). arXiv:1009.3251 (hep-th)

    Google Scholar 

  22. S. Ferrara, R. Kallosh, A. Strominger, \(\mathcal{N} = 2\) extremal black holes. Phys. Rev. D52, 5412 (1995). hep-th/9508072; A. Strominger, Macroscopic entropy of \(\mathcal{N} = 2\) extremal black holes. Phys. Lett. B383, 39 (1996). hep-th/9602111; S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514 (1996). hep-th/9602136; S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525 (1996). hep-th/9603090

    Google Scholar 

  23. S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75 (1997). hep-th/9702103

    Google Scholar 

  24. S. Ferrara, E.G. Gimon, R. Kallosh, Magic supergravities, \(\mathcal{N} = 8\) and black hole composites. Phys. Rev. D74, 125018 (2006). hep-th/0606211

    Google Scholar 

  25. S. Ferrara, A. Marrani, E. Orazi, Split Attractor Flow in \(\mathcal{N} = 2\)  Minimally Coupled Supergravity. arXiv:1010.2280 (hep-th), Nucl. Phys. B846, 512–541 (2011)

    Google Scholar 

  26. S. Ferrara, A. Marrani, E. Orazi, R. Stora, A. Yeranyan, Two-Center Black Holes Duality-Invariants for stu Model and its lower-rank Descendants. arXiv:1011.5864 (hep-th), J. Math. Phys. 062302, 52 (2011)

    Google Scholar 

  27. S. Ferrara, A. Marrani, A. Yeranyan, On Invariant Structures of Black Hole Charges. arXiv:1110.4004 (hep-th), J. High Energy Phys. 1202, 071 (2012).

    Google Scholar 

  28. D. Gaiotto, W.W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 0712, 093 (2007). arXiv:0710.1638 (hep-th)

    Google Scholar 

  29. E.G. Gimon, F. Larsen, J. Simon, Constituent model of extremal non-BPS black holes. J. High Energy Phys. 0907, 052 (2009). arXiv:0903.0719 (hep-th)

    Google Scholar 

  30. M. Günaydin, Lectures on Spectrum Generating Symmetries and U-Duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace. arXiv:0908.0374 (hep-th)

    Google Scholar 

  31. M. Günaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B133, 72 (1983); M. Günaydin, G. Sierra, P.K. Townsend, The geometry of \(\mathcal{N} = 2\) Maxwell-Einstein supergravity and Jordan Algebras. Nucl. Phys. B242, 244 (1984)

    Google Scholar 

  32. C. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B438, 109 (1995). hep-th/9410167

    Google Scholar 

  33. V.G. Kaç, Some remarks on nilpotent orbits. J. Algebr. 64, 190–213 (1980)

    Google Scholar 

  34. P. Levay, Two-center black holes, qubits and elliptic curves. Phys. Rev. D 84, 025023 (2011). arXiv:1104.0144 (hep-th)

    Google Scholar 

  35. J.F. Luciani, Coupling of O(2) supergravity with several vector multiplets. Nucl. Phys. B132, 325 (1978)

    Google Scholar 

  36. A. Marrani, E. Orazi, F. Riccioni, Exceptional reductions. arXiv:1012.5797v1 (hep-th), J. Phys. A. A44, 155207 (2011)

    Google Scholar 

  37. D. Roest, H. Samtleben, Twin supergravities. Class. Quantum Gravity 26, 155001 (2009). arXiv:0904.1344(hep-th)

    Google Scholar 

  38. R. Slansky, Group theory for unified model building. Phys. Rep. 79, 1 (1981)

    Google Scholar 

Download references

Acknowledgements

The present contribution is based on [4] made in collaboration with Alessio Marrani and Mario Trigiante. The work of S. F. is supported by the ERC Advanced Grant no. 226455, “Supersymmetry, Quantum Gravity and Gauge Fields” (SUPERFIELDS). The work of L.A. and R.D’A. is supported in part by the MIUR-PRIN contract 2009-KHZKRX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Andrianopoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrianopoli, L., D’Auria, R., Ferrara, S. (2013). On the Classification of Two Center Orbits for Magical Black Holes. In: Bellucci, S. (eds) Supersymmetric Gravity and Black Holes. Springer Proceedings in Physics, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31380-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31380-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31379-0

  • Online ISBN: 978-3-642-31380-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics