Skip to main content

Intersecting Attractors

  • Conference paper
  • First Online:
Supersymmetric Gravity and Black Holes

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 142))

  • 770 Accesses

Abstract

The attractor mechanism [1–4], initially discovered in the context of \(\mathcal{N} = 2\) black holes, has been recognized as a universal phenomenon governing any extremal flow in supergravity, i.e. a flow with an AdS horizon. It applies to both BPS and non-BPS black hole solutions in Einstein supergravities [5, 6], ungauged [7] and gauged [8] supergravities with higher derivative interactions and general intersections of brane solutions [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(\mathcal{N} = 1\) conditions are completed by \({\mathcal{P}}_{3} = -i\hat{\bar{\mu }}\), where \(\hat{\mu }\neq 0\) is the parameter appearing in the Killing spinor equation on AdS, related to the AdS cosmological constant Λ via \(\Lambda = -3\vert \hat{\mu }{\vert }^{2}\).

  2. 2.

    In particular, the second property is relevant for type IIA compactifications on 6d manifolds M 6 with SU(3) structure, where the Kähler potential K 2 is expected to take the cubic form \({e}^{-{K}_{2}} = \frac{4} {3}{ \int \limits }_{{M}_{6}}J \wedge J \wedge J\), where J is the almost symplectic 2–form on M 6. See Appendix A.1 for more details.

  3. 3.

    Interestingly, the quantity \({d}^{abc}{d}_{abc}\), appearing in (2.150) is related to the Ricci scalar curvature \(\mathcal{R}\) of the vector multiplets’ scalar manifold G ∕ H , whose general expression for a d-special Kähler space reads \(\mathcal{R} = -\left ({h}_{2} + 1\right ){h}_{2} + {d}^{abc}{d}_{abc}\), see [3537].

  4. 4.

    In this context, see also [4145] for studies of compactifications preserving \(\mathcal{N} = 1\).

  5. 5.

    A p–form is decomposable if locally it can be written as the wedging of p complex 1–forms.

References

  1. S. Ferrara, R. Kallosh, A. Strominger, N = 2 extremal black holes. Phys. Rev. D52, 5412–5416 (1995). http://arxiv.org/abs/hep-th/9508072 (hep-th/9508072)

  2. A. Strominger, Macroscopic entropy of N = 2 extremal black holes. Phys. Lett. B383, 39–43 (1996). http://arxiv.org/abs/hep-th/9602111 (hep-th/9602111)

  3. S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514–1524 (1996). http://arxiv.org/abs/hep-th/9602136 (hep-th/9602136)

  4. S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525–1534 (1996). http://arxiv.org/abs/hep-th/9603090 (hep-th/9603090)

  5. R. Kallosh, New attractors. J. High Energy Phys. 12, 022 (2005). http://arxiv.org/abs/hep-th/0510024 (hep-th/0510024)

  6. P.K. Tripathy, S.P. Trivedi, Non-supersymmetric attractors in string theory. J. High Energy Phys. 03, 022 (2006). http://arxiv.org/abs/hep-th/0511117 (hep-th/0511117)

  7. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity. J. High Energy Phys. 09, 038 (2005). http://arxiv.org/abs/hep-th/0506177 (hep-th/0506177)

  8. J.F. Morales, H. Samtleben, Entropy function and attractors for AdS black holes. J. High Energy Phys. 10, 074 (2006). http://arxiv.org/abs/hep-th/0608044 (hep-th/0608044)

  9. S. Ferrara, A. Marrani, J.F. Morales, H. Samtleben, Intersecting attractors. Phys. Rev. D79, 065031 (2009). http://arxiv.org/abs/0812.0050 (arXiv:0812.0050)

  10. D. Cassani, S. Ferrara, A. Marrani, J. F. Morales, H. Samtleben, A Special road to AdS vacua. J. High Energy Phys. 1002 (2010) 027. http://arxiv.org/abs/0911.2708 (arXiv:0911.2708)

  11. S. Bellucci, S. Ferrara, R. Kallosh, A. Marrani, Extremal black hole and flux vacua attractors. Lect. Notes Phys. 755, 115–191 (2008). http://arxiv.org/abs/0711.4547 (arXiv: 0711.4547)

  12. A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Relat. Gravity 40, 2249–2431 (2008). http://arxiv.org/abs/0708.1270 (arXiv:0708.1270)

  13. D.Z. Freedman, S.S. Gubser, K. Pilch, N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem. Adv. Theor. Math. Phys. 3, 363–417 (1999). http://arxiv.org/abs/hep-th/9904017 (hep-th/9904017)

  14. K. Goldstein, R.P. Jena, G. Mandal, S.P. Trivedi, A c-function for non-supersymmetric attractors. J. High Energy Phys. 02, 053 (2006). http://arxiv.org/abs/hep-th/0512138 (hep-th/0512138)

  15. A. Sen, Quantum entropy function from AdS(2)/CFT(1) correspondence. Int. J. Mod. Phys. A24, 4225–4244 (2009). http://arxiv.org/abs/0809.3304 (arXiv:0809.3304)

  16. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    Google Scholar 

  17. J.A. Strathdee, Extended poincare supersymmetry. Int. J. Mod. Phys. A2, 273 (1987)

    Google Scholar 

  18. A. Van Proeyen, Tools for supersymmetry. http://arxiv.org/abs/hep-th/9910030 (hep-th/ 9910030)

  19. P.K. Townsend, P-brane democracy, http://arxiv.org/abs/hep-th/9507048 (hep-th/ 9507048)

  20. S. Cecotti, S. Ferrara, L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A4, 2475 (1989)

    Google Scholar 

  21. S. Ferrara, S. Sabharwal, Quaternionic manifolds for type II superstring vacua of calabi-yau spaces. Nucl. Phys. B332, 317 (1990)

    Google Scholar 

  22. B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B400, 463–524 (1993). http://arxiv.org/abs/hep-th/9210068 (hep-th/9210068)

  23. R. D’Auria, S. Ferrara, M. Trigiante, S. Vaula, Gauging the heisenberg algebra of special quaternionic manifolds. Phys. Lett. B610, 147–151 (2005). http://arxiv.org/abs/hep-th/0410290 (hep-th/0410290)

  24. R. D’Auria, S. Ferrara, M. Trigiante, On the supergravity formulation of mirror symmetry in generalized Calabi-Yau manifolds. Nucl. Phys. B780, 28–39 (2007). http://arxiv.org/abs/hep-th/0701247 (hep-th/0701247)

  25. S. Gurrieri, J. Louis, A. Micu, D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications. Nucl. Phys. B654, 61–113 (2003). http://arxiv.org/abs/hep-th/0211102 (hep-th/0211102)

  26. M. Grana, J. Louis, D. Waldram, Hitchin functionals in N = 2 supergravity. J. High Energy Phys. 01, 008 (2006). http://arxiv.org/abs/hep-th/0505264 (hep-th/0505264)

  27. A.-K. Kashani-Poor, R. Minasian, Towards reduction of type II theories on SU(3) structure manifolds. J. High Energy Phys. 03, 109 (2007). http://arxiv.org/abs/hep-th/0611106 (hep-th/0611106)

  28. M. Grana, J. Louis, D. Waldram, SU(3) ×SU(3) compactification and mirror duals of magnetic fluxes. J. High Energy Phys. 04, 101 (2007). http://arxiv.org/abs/hep-th/0612237 (hep-th/0612237)

  29. D. Cassani, A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3) ×SU(3) compactifications. J. High Energy Phys. 09, 076 (2007). http://arxiv.org/abs/0707.3125 (arXiv:0707.3125)

  30. D. Cassani, Reducing democratic type II supergravity on SU(3) ×SU(3) structures. J. High Energy Phys. 06, 027 (2008). http://arxiv.org/abs/0804.0595 (arXiv:0804.0595)

  31. D. Cassani, A.-K. Kashani-Poor, Exploiting N = 2 in consistent coset reductions of type IIA. Nucl. Phys. B817, 25–57 (2009). http://arxiv.org/abs/0901.4251 (arXiv:0901.4251)

  32. L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal black holes in supergravity. Lect. Notes Phys. 737, 661–727 (2008). http://arxiv.org/abs/hep-th/0611345 (hep-th/0611345)

  33. L. Andrianopoli et al., N = 2 supergravity and N = 2 super yang-mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997). http://arxiv.org/abs/hep-th/9605032 (hep-th/9605032)

  34. M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B193, 221 (1981)

    Google Scholar 

  35. E. Cremmer, A. Van Proeyen, Classification of Kahler manifolds in N = 2 vector multiplet supergravity couplings. Class. Quantum Gravity 2, 445 (1985)

    Google Scholar 

  36. S. Bellucci, A. Marrani, R. Roychowdhury, On quantum special Kaehler geometry, http://arxiv.org/abs/0910.4249 (arXiv:0910.4249

  37. A. Ceresole, S. Ferrara, A. Marrani, 4d/5d Correspondence for the black hole potential and its critical points. Class. Quantum Gravity 24 (2007) 5651–5666. http://arxiv.org/abs/0707.0964 (arXiv:0707.0964)

  38. A. Tomasiello, Topological mirror symmetry with fluxes. J. High Energy Phys. 06, 067 (2005). http://arxiv.org/abs/hep-th/0502148 (hep-th/0502148)

  39. T. House, E. Palti, Effective action of (massive) IIA on manifolds with SU(3) structure. Phys. Rev. D72, 026004 (2005). http://arxiv.org/abs/hep-th/0505177 (hep-th/0505177)

  40. M. Grana, J. Louis, A. Sim, D. Waldram, E7(7) formulation of N = 2 backgrounds. J. High Energy Phys. 07, 104 (2009). http://arxiv.org/abs/0904.2333 (arXiv:0904.2333)

  41. I. Benmachiche, T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals. Nucl. Phys. B748, 200–252 (2006). http://arxiv.org/abs/hep-th/0602241 (hep-th/0602241)

  42. P. Koerber, L. Martucci, From ten to four and back again: how to generalize the geometry. J. High Energy Phys. 08, 059 (2007). http://arxiv.org/abs/0707.1038 (arXiv:0707.1038)

  43. L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications. J. High Energy Phys. 05, 027 (2009). http://arxiv.org/abs/0902.4031 (arXiv:0902.4031)

  44. J.-P. Derendinger, C. Kounnas, P.M. Petropoulos, F. Zwirner, Superpotentials in IIA compactifications with general fluxes. Nucl. Phys. B715, 211–233 (2005). http://arxiv.org/abs/hep-th/0411276 (hep-th/0411276)

  45. G. Villadoro, F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes. J. High Energy Phys. 06, 047 (2005). http://arxiv.org/abs/hep-th/0503169 (hep-th/0503169)

  46. S. Chiossi, S. Salamon, The intrinsic torsion of SU(3) and G2 structures. http://arxiv.org/abs/math/0202282 (math/0202282)

  47. L. Bedulli, L. Vezzoni, The Ricci tensor of SU(3)-manifolds. J. Geom. Phys. 57, 1125 (2007). http://arxiv.org/abs/math/0606786 (math/0606786)

    Google Scholar 

  48. E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest, A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls. Class. Quantum. Gravity 18, 3359–3382 (2001). http://arxiv.org/abs/hep-th/0103233 (hep-th/0103233)

    Google Scholar 

  49. B. Craps, F. Roose, W. Troost, A. Van Proeyen, What is special Kaehler geometry? Nucl. Phys. B503, 565–613 (1997). http://arxiv.org/abs/hep-th/9703082 (hep-th/9703082)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Francisco Morales .

Editor information

Editors and Affiliations

Appendix

Appendix

2.1.1 A.1 Flux/Gauging Dictionary for IIA on SU(3) Structure

Gauged \(\mathcal{N} = 2\) supergravities with a scalar potential of the form studied in this paper can be derived by flux compactifications of type II theories on SU(3) and SU(3) ×SU(3) structure manifolds. While we refer to the literature (see e.g. [25, 27, 2931, 3840]) for a detailed study of such general \(\mathcal{N} = 2\) dimensional reductions and the related issues,Footnote 4 in this appendix we provide a practical dictionary between the 10d and the 4d quantities, with a focus on the scalar potential derived from SU(3) structure compactifications of type IIA. In particular, we illustrate how the expressions one derives for \({V }_{\mathrm{NS}}\) and V R are consistent with the scalar potential (2.79) studied in the main text.

2.1.1.1 A.1.1 SU(3) Structures and Their Curvature

An SU(3) structure on a 6d manifold M 6 is defined by a real 2–form J and a complex, decomposableFootnote 5 3–form Ω, satisfying the compatibility relation \(J \wedge \Omega = 0\) as well as the non-degeneracy (and normalization) condition

$$\frac{i} {8}\Omega \wedge \bar{ \Omega }\; =\; \frac{1} {6}J \wedge J \wedge J\; =\; vo{l}_{6}\;\neq \;0\quad \mathrm{everywhere}\,.$$
(A.1)

Ω defines an almost complex structure I, with respect to which is of type (3, 0). In turn, I and J define a metric on M 6 via g = JI. The latter is required to be positive-definite, and vol 6 above denotes the associated volume form.

SU(3) structures are classified by their torsion classes \({W}_{i}\,,\,i = 1,\ldots 5\), defined via [46]:

$$\begin{array}{rcl} dJ& =& \frac{3} {2}\mathrm{Im}({\overline{W}}_{1}\Omega ) + {W}_{4} \wedge J + {W}_{3} \\ d\Omega & =& {W}_{1} \wedge J \wedge J + {W}_{2} \wedge J +{ \overline{W}}_{5} \wedge \Omega \,,\end{array}$$
(A.2)

where W 1 is a complex scalar, W 2 is a complex primitive (1,1)–form (primitive means \({W}_{2} \wedge J \wedge J = 0\)), W 3 is a real primitive (1,2) + (2,1)–form (primitive \(\Leftrightarrow {W}_{3} \wedge J = 0\)), W 4 is a real 1–form, and W 5 is a complex (1,0)–form.

Reference [47] provides a formula for the Ricci scalar R 6 in terms of the torsion classes. We will restrict to \({W}_{4} = {W}_{5} = 0\), in which case the formula is

$${R}_{6}\; =\; \frac{1} {2}\left (15\vert {W}_{1}{\vert }^{2} - {W}_{ 2}\lrcorner {\overline{W}}_{2} - {W}_{3}\lrcorner {W}_{3}\right )\,.$$
(A.3)

This can equivalently be expressed as

$${R}_{6}\,vo{l}_{6} = -\frac{1} {2}\left [\,dJ \wedge {_\ast}dJ + d\Omega \wedge {_\ast}d\bar{\Omega } - (dJ \wedge \Omega ) \wedge {_\ast}(dJ \wedge \bar{ \Omega })\,\right ]\,$$
(A.4)

as it can be seen recalling (A.2) and computing

$$\begin{array}{rcl} d\Omega \wedge {_\ast}d\bar{\Omega }& =& 12\vert {W}_{1}{\vert }^{2}vo{l}_{ 6} - J \wedge {W}_{2} \wedge {\overline{W}}_{2} \\ & =& \left (12\vert {W}_{1}{\vert }^{2} + {W}_{ 2}\lrcorner {\overline{W}}_{2}\right )vo{l}_{6} \\ dJ \wedge {_\ast}dJ& =& \left (9\vert {W}_{1}{\vert }^{2} + {W}_{ 3}\lrcorner {W}_{3}\right )vo{l}_{6} \\ (dJ \wedge \Omega ) \wedge {_\ast}(dJ \wedge \bar{ \Omega })& =& 36\vert {W}_{1}{\vert }^{2}vo{l}_{ 6}\,.\end{array}$$
(A.5)

2.1.1.2 A.1.2 The Scalar Potential from Dimensional Reduction

The 4d scalar potential receives contributions from both the NSNS and the RR sectors of type IIA supergravity. These are respectively given by

$$\begin{array}{rcl}{ V }_{\mathrm{NS}}& =& \frac{{e}^{2\varphi }} {2\mathcal{V}}{\int \limits }_{{M}_{6}}\left (\,\frac{1} {2}H \wedge {_\ast}H\, - {R}_{6} {_\ast} 1\,\right ) \\ & =& \frac{{e}^{2\varphi }} {4\mathcal{V}}{\int \limits }_{{M}_{6}}\left [\,H \wedge {_\ast}H + dJ \wedge {_\ast}dJ + d\Omega \wedge {_\ast}d\bar{\Omega }\right. \\ & & \left.-(dJ \wedge \Omega ) \wedge {_\ast}(dJ \wedge \bar{ \Omega })\,\right ], \end{array}$$
(A.6)
$$\begin{array}{rcl}{ V }_{\mathrm{R}}\;& =& \;\frac{{e}^{4\varphi }} {2} {\int \limits }_{{M}_{6}}\left (\,{F}_{0}^{2} {_\ast} 1\, +\, {F}_{ 2} \wedge {_\ast}{F}_{2}\, +\, {F}_{4} \wedge {_\ast}{F}_{4}\, +\, {F}_{6} \wedge {_\ast}{F}_{6}\,\right ), \end{array}$$
(A.7)

and the total potential reads \(V = {V }_{\mathrm{NS}} + {V }_{\mathrm{R}}\). In (A.6), H is the internal NSNS field-strength, \(\mathcal{V} ={ \int \limits }_{{M}_{6}}vo{l}_{6}\), and \(\varphi \) is the 4d dilaton \({e}^{-2\varphi } = {e}^{-2\phi }\mathcal{V}\), where we are assuming that the 10d dilaton ϕ is constant along M 6. The k–forms F k appearing in expression (A.7) are the internal RR field strengths, satisfying the Bianchi identity \(d{F}_{k} - H \wedge {F}_{k-2} = 0\). The F 6 form can be seen as the Hodge-dual of the F 4 extending along spacetime, and the term \({F}_{6} \wedge {_\ast}{F}_{6}\) arises in a natural way if one considers type IIA supergravity in its democratic formulation [48].

2.1.1.2.1 A.1.2.1 Expansion Forms

In order to define the mode truncation, we postulate the existence of a basis of differential forms on the compact manifold in which to expand the higher dimensional fields. For a detailed analysis of the relations that these forms need to satisfy in order that the dimensional reduction go through, see in particular [27].

We take ω0 = 1 and \(\tilde{{\omega }}^{0} = \frac{vo{l}_{6}} {\mathcal{V}}\), and we assume there exist a set of 2–forms ω a satisfying

$$\,{\omega }_{a} \wedge {_\ast}{\omega }_{b}\, =\, 4\,{g}_{ab}\,vo{l}_{6},\qquad \qquad {\omega }_{a} \wedge {\omega }_{b} = -{d}_{abc}\tilde{{\omega }}^{c}, $$
(A.8)

where \({g}_{ab}\) should be independent of the internal coordinates, d abc should be a constant tensor, and the dual 4–forms \(\tilde{{\omega }}^{a}\) are defined as

$$\tilde{{\omega }}^{a} = - \frac{1} {4\mathcal{V}}{g}^{ab} {_\ast} {\omega }_{ b}\,.$$
(A.9)

From the above relations, we see that

$${\omega }_{a} \wedge \tilde{ {\omega }}^{b}\, =\, -{\delta }_{ a}^{b}\,\tilde{{\omega }}^{0},\qquad \qquad {\omega }_{ a} \wedge {\omega }_{b} \wedge {\omega }_{c} = {d}_{abc}\tilde{{\omega }}^{0}\,.$$
(A.10)

We also assume the existence of a set of 3–forms \({\alpha }_{I},{\beta }^{I}\), satisfying

$${\alpha }_{I} \wedge {\beta }^{J}\, =\, {\delta }_{ I}^{J}\,\tilde{{\omega }}^{0}.$$
(A.11)

Adopting the notation \({\omega }^{\mathbb{A}} = {(\tilde{{\omega }}^{A},{\omega }_{A})}^{T} = {(\tilde{{\omega }}^{0},\tilde{{\omega }}^{a},{\omega }_{0},{\omega }_{a})}^{T}\;\) and \(\;{\alpha }^{\mathbb{I}} = {({\beta }^{I},{\alpha }_{I})}^{T}\), we see that the symplectic metrics \(\mathbb{C}\) appearing in the main text are here given by

$${\mathbb{C}}_{1}^{\mathbb{I}\mathbb{J}}\, =\, -\int {\alpha }^{\mathbb{I}} \wedge {\alpha }^{\mathbb{J}},\qquad {\mathbb{C}}_{ 2}^{\mathbb{A}\mathbb{B}}\, =\, -\int \langle {\omega }^{\mathbb{A}},{\omega }^{\mathbb{B}}\rangle \,,$$
(A.12)

where the antisymmetric pairing \(\langle \,,\,\rangle\) is defined on even forms ρ, σ as \(\langle \rho,\sigma \rangle \, =\, {[\lambda (\rho ) \wedge \sigma ]}_{\mathrm{6}}\), with \(\,\lambda ({\rho }_{k}) = {(-)}^{\frac{k} {2} }{\rho }_{k}\,\), k being the degree of ρ, and \({[\;\;]}_{6}\) selecting the piece of degree 6.

The basis forms are used to expand Ω as

$$\Omega \, =\, {Z}^{I}{\alpha }_{ I} -{\mathcal{G}}_{I}{\beta }^{I}\, =\, {e}^{-\frac{{K}_{1}} {2} }{\Pi }_{1}^{\mathbb{I}}\,{\alpha }_{\mathbb{I}}\,,$$
(A.13)

and J together with the internal NS 2–form B as:

$$J\, =\, {v}^{a}{\omega }_{ a},\;\;B\, =\, {b}^{a}{\omega }_{ a}\quad \; \Rightarrow \;\quad {e}^{-B-iJ}\, =\, {X}^{A}{\omega }_{ A} -{\mathcal{F}}_{A}\tilde{{\omega }}^{A}\, =\, {e}^{-\frac{{K}_{2}} {2} }{\Pi }_{2}^{\mathbb{A}}{\omega }_{\mathbb{A}}\,,$$
(A.14)

where in the last equalities we define \({\alpha }_{\mathbb{I}} = {\mathbb{C}}_{\mathbb{I}\mathbb{J}}{\alpha }^{\mathbb{J}} = {({\alpha }_{I},-{\beta }^{I})}^{T}\) and \({\omega }_{\mathbb{A}} = {\mathbb{C}}_{\mathbb{A}\mathbb{B}}{\omega }^{\mathbb{B}} = {({\omega }_{A},-\tilde{{\omega }}^{A})}^{T}\), and we adopt the symplectic notation defined in (2.76). Here, \(({Z}^{I},{\mathcal{G}}_{I})\) and \(({X}^{A},{\mathcal{F}}_{A})\) represent the holomorphic sections on the moduli spaces of Ω and B + iJ expanded as above, which (under some conditions [2628]) indeed exhibit a special Kähler structure, and correspond respectively to the manifolds \({\mathcal{M}}_{1}\) and \({\mathcal{M}}_{2}\) of the main text. Notice that here \({X}^{A} \equiv ({X}^{0},{X}^{a}) \equiv (1,{x}^{a}) = (1,-{b}^{a} - i{v}^{a})\), while \({\mathcal{F}}_{A} = \frac{\partial \mathcal{F}} {\partial {X}^{A}}\), where the cubic holomorphic function \(\mathcal{F} = \frac{1} {6}{d}_{abc}\frac{{X}^{a}{X}^{b}{X}^{c}} {{X}^{0}}\) is identified with the prepotential on \({\mathcal{M}}_{2}\). The Kähler potentials on \({\mathcal{M}}_{1}\) and \({\mathcal{M}}_{2}\) are recovered from \({K}_{1} = -\log i\int \Omega \wedge \bar{ \Omega }\,\) and \(\,{K}_{2} = -\log \frac{4} {3} \int J \wedge J \wedge J\), the latter yielding the metric g ab appearing in (A.8). Notice that (A.1) implies \({e}^{-{K}_{1}} = {e}^{-{K}_{2}} = 8\mathcal{V}\).

The matrices \(\mathbb{M}\) defined in (2.81) are given by

$${\mathbb{M}}_{1,\mathbb{I}\mathbb{J}}\, =\, -\int {\alpha }_{\mathbb{I}} \wedge {_\ast}{\alpha }_{\mathbb{J}},\qquad \qquad {\mathbb{M}}_{2,\mathbb{A}\mathbb{B}}\, =\, -{\sum \limits }_{k} \int {({e}^{B}{\omega }_{ \mathbb{A}})}_{k} \wedge {_\ast}{({e}^{B}{\omega }_{ \mathbb{B}})}_{k}\,,$$
(A.15)

and from the second relation one finds that the period matrix \({\mathcal{N}}_{2}\) on \({\mathcal{M}}_{2}\) reads

$$\mathrm{Re}{\mathcal{N}}_{AB} = -\left (\begin{array}{cccc} \frac{1} {3}{d}_{abc}{b}^{a}{b}^{b}{b}^{c}&\frac{1} {2}{d}_{abc}{b}^{b}{b}^{c} \\ \frac{1} {2}{d}_{abc}{b}^{b}{b}^{c} & {d}_{ abc}{b}^{c} \end{array} \right ),\quad \mathrm{Im}{\mathcal{N}}_{AB} = -4\mathcal{V}\left (\begin{array}{cc} \frac{1} {4} + {g}_{ab}{b}^{a}{b}^{b}&{g}_{ ab}{b}^{b} \\ {g}_{ab}{b}^{b} & {g}_{ab} \end{array} \right ),$$
(A.16)

which is in agreement with the expression derived from \(\mathcal{F}\) via the standard formula [49]

$${N}_{AB}\; =\;{ \overline{\mathcal{F}}}_{AB} + 2i\frac{\mathrm{Im}{\mathcal{F}}_{AD}{X}^{D}\mathrm{Im}{\mathcal{F}}_{BE}{X}^{E}} {{X}^{C}\mathrm{Im}{\mathcal{F}}_{CE}{X}^{E}},\qquad \quad {\mathcal{F}}_{AB} \equiv \frac{{\partial }^{2}\mathcal{F}} {\partial {X}^{A}\partial {X}^{B}}\,.$$
(A.17)

Finally, we also require the following differential conditions on the basis forms:

$$d{\omega }_{a}\, =\, {e}_{a}^{\mathbb{I}}{\alpha }_{ \mathbb{I}},\qquad \qquad d{\alpha }^{\mathbb{I}}\, =\, {e}_{ a}^{\mathbb{I}}\tilde{{\omega }}^{a},\qquad \qquad d\tilde{{\omega }}^{a}\, =\, 0\,,$$
(A.18)

where the \({e}_{a}^{\mathbb{I}} = ({{e}_{a}}^{I},{e}_{aI})\) are real constants, usually called ‘geometric fluxes’. Defining the total internal NS 3–form as \(H = {H}^{\mathrm{fl}} + dB\), and expanding its flux part as

$${H}^{\mathrm{fl}}\, =\, -{{e}_{ 0}}^{I}{\alpha }_{ I} + {e}_{0I}{\beta }^{I}\, \equiv \,-{e}_{ 0}^{\mathbb{I}}{\alpha }_{ \mathbb{I}}\,,$$
(A.19)

with constant \({e}_{0}^{\mathbb{I}}\), we can define \({e}_{A}^{\mathbb{I}} = {({e}_{0}^{\mathbb{I}},{e}_{a}^{\mathbb{I}})}^{T}\), and thus fill in half of the charge matrix \(Q\) introduced in (2.77):

$${ Q}_{\mathbb{A}}^{\mathbb{I}} = \left (\begin{array}{c} {e}_{A}^{\mathbb{I}} \\ 0\end{array} \right ).$$
(A.20)

As noticed in [28], more general matrices, involving the \({m}_{A}^{\mathbb{I}}\) charges as well, can be obtained by considering non-geometric fluxes, or SU(3) ×SU(3) structure compactifications. The nilpotency condition d 2 = 0 applied to (A.18), together with the Bianchi identity dH = 0, translates into the constraint

$${e}_{A}^{\mathbb{I}}{e}_{ B\mathbb{I}}\, =\, 0\qquad \qquad \qquad \textrm{ with }\;\;{e}_{A\mathbb{I}} = {\mathbb{C}}_{\mathbb{I}\mathbb{J}}{e}_{A}^{\mathbb{J}},$$
(A.21)

which, taking into account (A.20), is consistent with (2.78).

In the following, by using the above relations we recast in turn expressions (A.6) and (A.7) for \({V }_{\mathrm{NS}}\) and \({V }_{\mathrm{R}}\) in terms of 4d degrees of freedom, and show their consistency with (2.79).

2.1.1.2.2 A.1.2.2 Derivation of V NS

Recalling the expansions of J, H and Ω defined above, using the assumed properties of the basis forms, and adopting the notation introduced in (2.76), one finds

$$\begin{array}{rcl} \int dJ \wedge {_\ast}dJ = -{v}^{a}{v}^{b}\,{e}_{ a}^{\mathbb{I}}\,{\mathbb{M}}_{ 1,\mathbb{I}\mathbb{J}}{e}_{b}^{\mathbb{J}},\quad & & \quad \int H \wedge {_\ast}H = -{b}^{A}{b}^{B}\,{e}_{ A}^{\mathbb{I}}\,{\mathbb{M}}_{ 1,\mathbb{I}\mathbb{J}}{e}_{B}^{\mathbb{J}}\,, \\ \int d\Omega \wedge {_\ast}d\bar{\Omega } = \frac{{e}^{-{K}_{1}}} {4\mathcal{V}} {\Pi }_{1}^{\mathbb{I}}{e}_{ a\mathbb{I}}{g}^{ab}{e}_{ b\mathbb{J}}{\overline{\Pi }}_{1}^{\mathbb{J}},\quad & & \quad \int (dJ \wedge \Omega ) \wedge {_\ast}(dJ \wedge \bar{ \Omega }) \\ & & \quad = \frac{{e}^{-{K}_{1}}} {\mathcal{V}} {\Pi }_{1}^{\mathbb{I}}{e}_{ a\mathbb{I}}{v}^{a}{v}^{b}{e}_{ b\mathbb{J}}{\overline{\Pi }}_{1}^{\mathbb{J}}, \\ \end{array}$$

where we define \({b}^{A} = (-1,{b}^{a})\). Plugging this into (A.6), we get the NSNS contribution to V, expressed in a 4d language:

$${V }_{\mathrm{NS}} = -\frac{{e}^{2\varphi }} {4\mathcal{V}}\left [{X}^{A}{e}_{ A}^{\mathbb{I}}\,{\mathbb{M}}_{ 1,\mathbb{I}\mathbb{J}}{e}_{B}^{\mathbb{J}}\,{\overline{X}}^{B} -\frac{{e}^{-{K}_{1}}} {4\mathcal{V}} {\Pi }_{1}^{\mathbb{I}}{e}_{ a\mathbb{I}}({g}^{ab} - 4{v}^{a}{v}^{b}){e}_{ b\mathbb{J}}{\overline{\Pi }}_{1}^{\mathbb{J}}\right ]\,.$$
(A.22)

Recalling (A.16), noticing that \(\frac{1} {4\mathcal{V}}({g}^{ab} - 4{v}^{a}{v}^{b}) = -{(\mathrm{Im}{\mathcal{N}}_{ 2})}^{-1\,ab} - 4{e}^{{K}_{2}}({X}^{a}{\overline{X}}^{b} +{ \overline{X}}^{a}{X}^{b})\), and recalling that \({e}^{-{K}_{1}} = {e}^{-{K}_{2}} = 8\mathcal{V}\), we conclude that (A.22) is consistent with (2.79).

2.1.1.2.3 A.1.2.3 Derivation of V R

We consider the modified field-strengths \({G}_{k} \equiv {\left [{e}^{-B}F\right ]}_{k}\), which satisfy the Bianchi identity \(d{G}_{k} - {H}^{\mathrm{fl}} \wedge {G}_{k-2} = 0\), and we define the expansions

$${G}_{0}\, =\, {p}^{0},\qquad \;\;\qquad {G}_{ 2}\, =\, {p}^{a}{\omega }_{ a},\qquad \;\;\qquad {A}_{3}\, =\, {\xi }^{\mathbb{I}}{\alpha }_{ \mathbb{I}}$$
$${G}_{4}\, =\, {G}_{4}^{\mathrm{fl}} + d{A}_{ 3}\, =\, ({q}_{a} - {e}_{a\mathbb{I}}{\xi }^{\mathbb{I}})\tilde{{\omega }}^{a},\qquad {G}_{ 6}\, =\, {G}_{6}^{\mathrm{fl}} - {H}^{\mathrm{fl}} \wedge {A}_{ 3}\, =\, ({q}_{0} - {e}_{0\mathbb{I}}\,{\xi }^{\mathbb{I}})\tilde{{\omega }}^{0}.$$

The Bianchi identities then amount just to the following constraint among the charges

$${p}^{A}{e}_{ A}^{\mathbb{I}}\, =\, 0\,,$$
(A.23)

which, recalling (A.20), gives the last equality in (2.78). Then the integral in (A.7) reads

$$\sum \limits_{k} \int {F}_{k} \wedge {_\ast}{F}_{k}\, =\,\sum \limits_{k} \int {({e}^{B}G)}_{ k} \wedge {_\ast}{({e}^{B}G)}_{ k}\, =\, {(c +\widetilde{ Q}\xi )}^{T}{\mathbb{M}}_{ 2}(c +\widetilde{ Q}\xi )\,,$$
(A.24)

where for the second equality we use (A.15), and here \({(c +\widetilde{ Q}\xi )}^{\mathbb{A}}\, =\, {({p}^{A},\,{q}_{A} - {e}_{A\mathbb{I}}{\xi }^{\mathbb{I}})}^{T}\). The expression for V R we obtain is therefore consistent with (2.79).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morales, J.F. (2013). Intersecting Attractors. In: Bellucci, S. (eds) Supersymmetric Gravity and Black Holes. Springer Proceedings in Physics, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31380-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31380-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31379-0

  • Online ISBN: 978-3-642-31380-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics