An Efficient Histogram-Based Texture Classification Method with Weighted Symmetrized Kullback-Leibler Divergence

  • Yongsheng Dong
  • Jinwen Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)


In information processing using Wavelet transform, wavelet subband coefficients are often modelled by a probability distribution function. Recently, a local energy histogram method has been proposed to alleviate the difficulty in modeling wavelet subband coefficients with a previously assumed distribution function. Actually, the similarity between any two local energy histograms was measured by a symmetrized Kullback-Leibler divergence (SKLD). However, this measurement neglects the balance of wavelet subbands’ roles in texture classification. In this paper, we propose an efficient texture classification method based on weighted symmetrized Kullback-Leibler divergences (WSKLDs) between two local energy histograms (LEHs). In particular, for any test and training images, we index their Wavelet subbands in the same way, and weight the SKLD between any two LEHs of the s-th wavelet subbands of two image by the reciprocal of the summation of the SKLDs between the expected LEHs of any two different texture classes over all training images. Experimental results reveal that our proposed method outperforms five state-of-the-art methods.


Texture classification Wavelet subband Imbalance problem Local energy histogram (LEH) Kullback-Leibler divergence (KLD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laine, A., Fan, J.: Texture classification by wavelet pachet signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1186–1191 (1993)CrossRefGoogle Scholar
  2. 2.
    Liu, X., Wang, D.L.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)CrossRefGoogle Scholar
  3. 3.
    Unser, M.: Texture classification and segmentaion using wavelet frames. IEEE Transactions on Image Processing 4(11), 1549–1560 (1995)CrossRefGoogle Scholar
  4. 4.
    Wouwer, G.V.D., Scheunders, P., Dyck, D.V.: Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8(4), 592–598 (1999)CrossRefGoogle Scholar
  5. 5.
    Kim, S.C., Kang, T.J.: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition 40(4), 1207–1221 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Selvan, S., Ramakrishnan, S.: SVD-based modeling for image texture classification using wavelet transformation. IEEE Transactions on Image Processing 16(11), 2688–2696 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing 11(2), 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choy, S.K., Tong, C.S.: Supervised texture classification using characteristic generalized gaussian density. Journal of Mathematical Imaging and Vision 29(1), 35–47 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, L., Tong, C.S., Choy, S.K.: Texture classification using refined histogram. IEEE Transactions on Image Processing 19(5), 1371–1378 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Choy, S.K., Tong, C.S.: Statistical properties of bit-plane probability model and its application in supervised texture classification. IEEE Transactions on Image Processing 17(8), 1399–1405 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dong, Y., Ma, J.: Bayesian texture classification based on contourlet transform and BYY harmony learning of Poisson mixtures. IEEE Transactions on Image Processing 21(3), 909–918 (2012)CrossRefGoogle Scholar
  12. 12.
    Dong, Y., Ma, J.: Texture Classification Based on Contourlet Subband Clustering. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M.M. (eds.) ICIC 2011. LNCS (LNAI), vol. 6839, pp. 421–426. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Dong, Y., Ma, J.: Wavelet-based image texture classification using local energy histograms. IEEE Signal Processing Letters 18(4), 247–250 (2011)CrossRefGoogle Scholar
  14. 14.
    Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized Gamma density and its application in texture retrieval. IEEE Transactions on Image Processing 19(2), 281–289 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Transactions on Image Processing 19(6), 1548–1557 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Arivazhagan, S., Ganesan, L., Subash Kumar, T.G.: Texture classification using ridgelet transform. Pattern Recognition Letters 27(16), 1875–1883 (2006)CrossRefGoogle Scholar
  17. 17.
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yongsheng Dong
    • 1
    • 2
  • Jinwen Ma
    • 1
  1. 1.Department of Information Science, School of Mathematical, Sciences and LMAMPeking UniversityBeijingChina
  2. 2.Electronic Information Engineering CollegeHenan University of Science and TechnologyLuoyangChina

Personalised recommendations