Robust Constrained Constant Modulus Algorithm

  • Xin Song
  • Jinkuan Wang
  • Qiuming Li
  • Han Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)


In practical applications, the performance of the linearly constrained constant modulus algorithm (CMA) is known to degrade severely in the presence of even slight signal steering vector mismatches. To account for the mismatches, a novel robust CMA algorithm based on double constraints is proposed via the oblique projection of signal steering vector and the norm constraint of weight vector. To improve robustness, the weight vector is optimized to involve minimization of a constant modulus algorithm objective function by the Lagrange multipliers method, in which the parameters can be precisely derived at each iterative step. The proposed robust constrained CMA has a faster convergence rate, provides better robustness against the signal steering vector mismatches and yields improved array output performance as compared with the conventional constrained CMA. The numerical experiments have been carried out to demonstrate the superiority of the proposed algorithm on beampattern control and output SINR enhancement.


robust adaptive beamforming linearly constrained CMA signal steering vector mismatches quadratic constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brennan, L.E., Mallet, J.D., Reed, I.S.: Adaptive arrays in airborne MTI radar. IEEE Trans. Antennas Propagation 24, 607–615 (1976)CrossRefGoogle Scholar
  2. 2.
    Yang, J., Xi, H.S., Yang, F., Zhao, Y.: Fast adaptive blind beamforming algorithm for antenna array in CDMA systems. IEEE Trans. Vehicular Technology 55, 549–558 (2006)CrossRefGoogle Scholar
  3. 3.
    Fares, S.A., Denidni, T.A., Affes, S., Despins, C.: Fractional-delay sequential blind beamforming for wireless multipath communications in confined areas. IEEE Trans. Wireless Communications 7, 629–638 (2008)CrossRefGoogle Scholar
  4. 4.
    Godara, L.C.: Application of antenna arrays to mobile communications.II. Beamforming and direction-of-arrival considerations. Proc. IEEE 85, 1195–1245 (1997)CrossRefGoogle Scholar
  5. 5.
    Gershman, A.B., Nemeth, E., Böhme, J.F.: Experimental performance of adaptive beamforming in a sonar environment with a towed array and moving interfering sources. IEEE Trans. Signal Processing 48, 246–250 (2000)CrossRefGoogle Scholar
  6. 6.
    Frost III, O.L.: An algorithm for linearly constrained adaptive processing. Proc. IEEE 60, 926–935 (1972)CrossRefGoogle Scholar
  7. 7.
    Buckley, K.M., Griffiths, L.J.: An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propagat. 34, 311–319 (1986)CrossRefGoogle Scholar
  8. 8.
    Zhang, S., Thng, I.L.: Robust presteering derivative constraints for broadband antenna arrays. IEEE Trans. Signal Processing 50, 1–10 (2002)CrossRefGoogle Scholar
  9. 9.
    Jiang, B., Sun, C.Y., Zhu, Y.: A new robust quadratic constraint beamforming against array steering vector errors. In: ICCCS 2004, Chengdu, China, pp. 765–768 (June 2004)Google Scholar
  10. 10.
    Elnashar, A., Elnoubi, S.M., El-Mikati, H.A.: Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans. Antennas Propagat. 54, 3647–3658 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, J., Stoica, P., Wang, Z.: On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Processing 51, 1702–1715 (2003)CrossRefGoogle Scholar
  12. 12.
    Li, J., Stoica, P., Wang, Z.: Doubly constrained robust Capon beamformer. IEEE Trans. Signal Processing 52, 2407–2423 (2004)CrossRefGoogle Scholar
  13. 13.
    Vorobyov, S.A., Gershman, A.B., Luo, Z.Q.: Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Processing 51, 313–324 (2003)CrossRefGoogle Scholar
  14. 14.
    Shahbazpanahi, S., Gershman, A.B., Luo, Z.Q., Wong, K.M.: Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Processing 51, 2257–2269 (2003)CrossRefGoogle Scholar
  15. 15.
    Xu, C., Feng, G., Kwak, K.S.: A modified constrained constant modulus approach to blind adaptive multiuser detection. IEEE Trans. Commun. 49, 1642–1648 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Li, L., Fan, H.H.: Blind CDMA detection and equalization using linearly constrained CMA. In: ICASSP 2000, Istanbul, Turkey, pp. 2905–2908 (June 2000)Google Scholar
  17. 17.
    McCloud, M.L., Scharf, L.L.: A new subspace identification algorithm for high-resolution DOA estimation. IEEE Trans. Antennas Propagat. 50, 1382–1390 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xin Song
    • 1
  • Jinkuan Wang
    • 1
  • Qiuming Li
    • 1
  • Han Wang
    • 2
  1. 1.Engineering Optimization and Smart Antenna InstituteNortheastern University at QinhuangdaoChina
  2. 2.National Engineering Laboratory for High Speed Train System IntegrationCSR Qingdao Sifang Locomotive & Rolling Stock Co., LtdQingdaoChina

Personalised recommendations