Advertisement

A Remote Sensing Image Matching Algorithm Based on the Feature Extraction

  • Chengdong Wu
  • Chao Song
  • Dongyue Chen
  • Xiaosheng Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)

Abstract

In this paper, a novel method for remote sensing image matching through mean-shift is proposed. First, state of the improved Mean-shift is reminded. Primary mean-shift algorithm is only based on color feature, but color feature does not apply to the remote sensing images matching. This paper exhibits a method to solve this problem using the gradient direction histogram instead of the color histogram. Secondly, Speeded-Up Robust Features (SURF) is applied to the fine matching. The experimental results show that the improved mean-shift matching algorithm, combining to the surf detector can realize two images matching accurately.

Keywords

Feature matching Remote sensing image Mean-shift Gradient direction histogram SURF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, J.X., Xiao, D.Y., Jiang, L.D., Guo, R.: Approach for Geo-location with unmanned aerial vehicle. Opto-Electronic Engineering 34 (2007)Google Scholar
  2. 2.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. on Information Theory 21, 32–40 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cheng, Y.Z.: Mean Shift mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 790–799 (1995)CrossRefGoogle Scholar
  4. 4.
    Comaniciu, D., Meer, P.: Mean Shift analysis and applications. In: Proceedings of the 7th IE Google Scholar
  5. 5.
    Qin, Z., Cao, J.Z.: New Mean shift tracking algorithm based on orientation histogram. Electronic Design Engineering 19 (2011)Google Scholar
  6. 6.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 564–577 (2003)CrossRefGoogle Scholar
  7. 7.
    Mahnaz, J.D., Rahebe, N.A.: Moving Object Tracking Based on Mean Shift Algorithm and Features Fusion. IEEEGoogle Scholar
  8. 8.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chengdong Wu
    • 1
  • Chao Song
    • 1
  • Dongyue Chen
    • 1
  • Xiaosheng Yu
    • 1
  1. 1.College of Information Science & EngineeringNortheastern UniversityShenyangChina

Personalised recommendations