Advertisement

Two-Phase Test Sample Representation with Efficient M-Nearest Neighbor Selection in Face Recognition

  • Xinjun Ma
  • Ning Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)

Abstract

Sparse representation method, especially the Two-Phase Test Sample Representation (TPTSR) method is regarded as a powerful algorithm for face recognition. The TPTSR method is a two-phase process in which finds out the M nearest neighbors to the testing sample in the first phase, and classifies the testing sample into the class with the most representative linear combination in the second phase. However, this method is limited by the overwhelming computational load, especially for a large training set and big number of classes. This paper studies different nearest neighbor selection approaches for the first phase of TPTSR in order to reduce the computational expenses of face recognition. Experimental results and theoretical analysis show that computational efficiency can be significantly increased by using relatively more straightforward criterions while maintaining a comparable classification performance with the original TPTSR method.

Keywords

Computer vision face recognition pattern recognition sparse representation transform methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirby, M., Sirovich, L.: Application of the KL phase for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)CrossRefGoogle Scholar
  2. 2.
    Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71, 1857–1865 (2008)CrossRefGoogle Scholar
  3. 3.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)CrossRefGoogle Scholar
  4. 4.
    Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature level: Complex-matrix-based fusion scheme. Opt. Eng. 49 (2010)Google Scholar
  5. 5.
    Park, S.W., Savvides, M.: A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination. EURASIP J. Adv. Signal Process. 2010, 11 (2010)CrossRefGoogle Scholar
  6. 6.
    Debruyne, M., Verdonck, T.: Robust kernel principal component analysis and classification. Adv. Data Anal. Classification 4, 151–167 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Xu, Y., Zhang, D., Song, F., Yang, J.-Y., Jing, Z., Li, M.: A method for speeding up feature extraction based on KPCA. Neurocomputing 70, 1056–1061 (2007)CrossRefGoogle Scholar
  8. 8.
    Tipping, M.E.: Sparse kernel principal component analysis. In: Leen, T.G.D.T.K., Tresp, V. (eds.) Neural Information Processing Systems, pp. 633–639. MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Schölkopf, B., Smola, A., Müller, K.-R.: Kernel Principal Component Analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Schölkopf, B., Smola, A.: Learning With Kernels. MIT Press, Cambridge (2002)Google Scholar
  11. 11.
    Muller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–201 (2001)CrossRefGoogle Scholar
  12. 12.
    Tao, D., Tang, X.: Kernel full-space biased discriminant analysis. In: IEEE ICME, pp. 1287–1290 (June 2004)Google Scholar
  13. 13.
    Fan, Z., Xu, Y., Zhang, D.: Local Linear Discriminant Analysis Framework Using Sample Neighbors. IEEE Trans. Neu. Net. 22, 1119–1132 (2011)CrossRefGoogle Scholar
  14. 14.
    Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Cir. Sys. Vid. Tech. 21 (2011)Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xinjun Ma
    • 1
  • Ning Wu
    • 1
  1. 1.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhen University Town, XiliShenzhenChina

Personalised recommendations