Advertisement

Gradient Vector Flow Based on Anisotropic Diffusion

  • Xiaosheng Yu
  • Chengdong Wu
  • Dongyue Chen
  • Ting Zhou
  • Tong Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)

Abstract

A novel external force field for active contours, called gradient vector flow based on anisotropic diffusion (ADGVF), is proposed in this paper. The generation of ADGVF contains an anisotropic diffusion process that the diffusion in the tangent and normal directions to the isophote lines has different diffusion speeds which are locally adjusted according the local structures of the image. The proposed method can address the problem associated with poor convergence of gradient vector flow in the normal direction (NGVF) to the long, thin boundary indentations and the openings of the boundaries. It can improve active contour convergence to these positions. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. Experimental results demonstrate that ADGVF has better performance in terms of accuracy, efficiency and robustness that that of NGVF.

Keywords

active contours gradient vector flow anisotropic diffusion diffusion speed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)CrossRefGoogle Scholar
  2. 2.
    Abrantes, A.J., Marques, J.S.: A class of constrained clustering algorithms for object boundary extraction. IEEE Transactions on Image Processing 5(11), 1507–1521 (1996)CrossRefGoogle Scholar
  3. 3.
    Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7(3), 359–369 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Xu, C., Prince, J.: Generalized gradient vector flow external force for active contours. Signal Processing 71, 131–139 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Yu, Z., Bajaj, C.: Image segmentation using gradient vector diffusion and region merging. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 828–831. IEEE Press (2002)Google Scholar
  6. 6.
    Ning, J.F., Wu, C.K., Jiang, G., Liu, S.G.: Anisotropic diffusion analysis of gradient vector flow. Journal of Software 21(4), 612–619 (2010)CrossRefGoogle Scholar
  7. 7.
    Ning, J.F., Wu, C.K., Liu, S.G., Yang, S.Q.: NGVF: An improved external force field for active contour model. Pattern Recognition Letters 28(1), 58–63 (2007)CrossRefGoogle Scholar
  8. 8.
    Paragios, N., Mellina, G.O., Ramesh, V.: Gradient vector flow fast geodesic active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 402–407 (2004)CrossRefGoogle Scholar
  9. 9.
    Huang, A., Abugharbieh, R., Tam, R.: A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Transactions on Biomedical Engineering 56(7), 1838–1848 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, C.M., Huang, R., Ding, Z.H., Chris, J., Dimitris, N.M., John, C.G.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing 20(7), 2007–2016 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yu, H.C., Chua, C.S.: GVF-based anisotropic diffusion models. IEEE Transactions on Image Processing 15(6), 1517–1524 (2006)CrossRefGoogle Scholar
  12. 12.
    Li, X.G., Shen, L.S., Lam, K., Wang, S.Y.: An image magnification method with GVF-based anisotropic diffusion model. Acta Electronica Sinica 36(9), 1755–1758 (2008)Google Scholar
  13. 13.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understand. 53, 211–218 (1991)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  15. 15.
    Ning, J.F., Wu, C.K., Jiang, G., Liu, S.G.: Anisotropic diffusion analysis of gradient vector flow. Journal of Software 21(4), 612–619 (2010)CrossRefGoogle Scholar
  16. 16.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–636 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaosheng Yu
    • 1
  • Chengdong Wu
    • 1
  • Dongyue Chen
    • 1
  • Ting Zhou
    • 1
  • Tong Jia
    • 1
  1. 1.College of Information Science & EngineeringNortheastern UniversityShenyangChina

Personalised recommendations