Advertisement

On Cortex Mechanism Hierarchy Model for Facial Expression Recognition: Multi-database Evaluation Results

  • Ting Zhang
  • Guosheng Yang
  • Xinkai Kuai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7368)

Abstract

Human facial expressions - a visually explicit manifestation of human emotions - convey a wealth of social signals. They are often considered as the short cut to reveal the psychological consequences and mechanisms underlying the emotional modulation of cognition. However, how to analyze emotional facial expressions from the visual cortical system’s viewpoint, thus, how visual system handles facial expression information, remains elusive. As an important paradigm for understanding hierarchical processing in the ventral pathway, we report results by applying a hierarchy cortical model proposed by Poggio et al to analyze facial cues on several facial expression databases, showing that the method is accurate and satisfactory, indicating that the cortical like mechanism for facial expression recognition should be exploited in great consideration.

Keywords

facial expression recognition visual cortex hierarchical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laughlin, S.B., Sejnowski, T.J.: Communication in Neuronal Networks. Science 301, 1870–1874 (2003)CrossRefGoogle Scholar
  2. 2.
    Barlow, H.: Possible principles underlying the transformation of sensory messages. In: Sensory Communication, pp. 217–234 (1961)Google Scholar
  3. 3.
    Fukushima, K., Miyake, S.: Neocognitron, a self-organizing neural network model for a mechanism of visual pattern recognition. Lecture Notes in Biomathematics, pp. 267–285. Springer, Heidelberg (1982)Google Scholar
  4. 4.
    LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time-Series. In: The Handbook of Brain Theory and Neural Networks. MIT Press (1995)Google Scholar
  5. 5.
    LeCun, Y., Bengio, Y.: Pattern Recognition and Neural Networks. In: The Handbook of Brain Theory and Neural Networks. MIT Press (1995)Google Scholar
  6. 6.
    Ullman, S., Soloviev, S.: Computation of pattern invariance in brain-like structures. Neural Netw. 12, 1021–1036 (1999)CrossRefGoogle Scholar
  7. 7.
    Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermdediate complexity and their use in classification. Nat. Neurosci. 5(7), 682–687 (2002)Google Scholar
  8. 8.
    Wersing, H., Koerner, E.: Learning optimized features for hierarchical models of invariant recognition. Neural Comp. 15(7), 1559–1588 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRefGoogle Scholar
  10. 10.
    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007)CrossRefGoogle Scholar
  11. 11.
    Li, Z.P.: Theoretical Understanding of the early visual processes by data compression and data selection. Network: Computation in Neural System 17(4) (2006)Google Scholar
  12. 12.
    Serre, T.: Learning a Dictionary of Shape-Components in Visual Cortex: Comparison with Neurons, Humans and Machines, PhD Thesis, Massachusetts Institute of Technology (2006)Google Scholar
  13. 13.
  14. 14.
    Cohn-Kanada AU-Coded dataset, http://vasc.ri.cmu.edu/idb/html/face
  15. 15.
  16. 16.
    Fu, S.Y., Hou, Z.G., Yang, G.S.: Spiking Neural Networks based Cortex Like Mechanism: A Case Study for Facial Expression Recognition. In: IJCNN (2011)Google Scholar
  17. 17.
    Wersing, H., Koerner, E.: Learning optimized features for hierarchical models of invariant recognition. Neural Comp. 15(7), 1559–1588 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Serre, T., Poggio, T.: Models of visual cortex. In: Scholarpedia (2012) (in revision)Google Scholar
  19. 19.
    Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Recognizing Facial Expression: Machine Learning and Application to Spontaneous Behavior. In: CVPR (2005)Google Scholar
  20. 20.
    Erman, X., Senlin, L., Limin, P.: Turbo-Boost Facial Expression Recognition Using Haar-Like Features. Journal of Computer Aided Design and Computer Graphics 23(8) (2011) (in Chinese)Google Scholar
  21. 21.
    Shih, F.Y., Chuang, C.F., Wang, P.P.: Performance Comparison of Facial Expression Recongition in JAFFE Database. International Journal of Pattern Recognition and Artificial Intelligence 22(3), 445–459 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ting Zhang
    • 1
  • Guosheng Yang
    • 1
  • Xinkai Kuai
    • 1
  1. 1.Department of Automation, School of Information and EngineeringMinzu University of ChinaBeijingChina

Personalised recommendations