Skip to main content

Soils: Retention and Movement of Elements at the Interface

  • Chapter
  • First Online:

Abstract

Soils are developed at the surface zone where atmosphere and rock materials which have interacted in the first instances of alteration, specifically with rain water that is basically very unsaturated with respect to mineral elements are influenced by chemical forces engendered by plant activity. At the interface water moves into the alterite and eventually it moves outward (down hill by gravity) to the water table and into the surface flow of streams and rivers. This movement of water from land surfaces to streams and rivers brings with it the dissolved and some fine grained material (clays) into the system of material displacement which is called erosion. Erosion does not necessarily mean displacement by mass movement of solids. Dissolved material makes up a significant amount of displacement of material in the geological cycle. The most important aspect of the contact zone is that it is for the most part covered, or at least partially, by plants which form a zone of roots which interact with the alterite material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aiken W (2002) Global patterns: climate, vegetation and soils. University of Oklahoma Press, Norman, OK, 435 pp

    Google Scholar 

  • Amato M, Migliozi A, Mazzoleni S (2004) Il sistema suolo vegetazione. Liguori Editore, Napoli, 350 pp

    Google Scholar 

  • Arai Y (2010) Ch 16 Arsenic and antimony. In: Hooda P (ed) Trace elements in soils. Wiley, Chichester, UK, pp 396–435, 596 pp

    Google Scholar 

  • Arnfalk P, Wasay S, Tokunaga S (1996) A comparative study of Cd, Cr(III), Cr(IV) Hg and Pb uptake by minerals and soil materials. Water Air Soil Pollut 87:131–148

    Article  Google Scholar 

  • Aubert H, Pinta M (1977) Trace elements in soils. Elsevier, Amsterdam, 395 pp

    Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Article  Google Scholar 

  • Barkoudah Y, Henderson J (2006) Plant ashes from Syria and the manufacture of ancient glass: ethnographic and scientific aspects. J Glass Stud 48:297–321

    Google Scholar 

  • Black C (1957) Soil-plant relationships. Wiley, New York, 792 pp

    Google Scholar 

  • Boeglin J-L, Mazaltarim D (1989) Géochimie, degrés d’évolution et lithodépendance des cuirasses ferrugineuses de la région de Gaoua au Birkina Faso. Sci Géol 42:27–44

    Google Scholar 

  • Borrman B, Wang D, Bormann F, Benoit G, April R, Snyder M (1998) Rapid plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155

    Article  Google Scholar 

  • Broadley M, Bowen H, Cotterill H, Hammond J, Meacham M, Mead A, White P (2004) Phylogenic variation in the shoot mineral concentration of angiosperms. J Exp Bot 56:321–336

    Article  Google Scholar 

  • Bryant J, Dixon J (1964) Clay mineralogy and weathering of a red-yellow podzolic soil from quartz mica schist in the Alabama piedmont. In: Ingerson E (ed) Clays and clay minerals, Monograph 19. Pergamon, New York, pp 509–521, 691 pp

    Google Scholar 

  • Buckman H, Brady N (1969) The nature and properties of soils. Macmillan, New York, 651 pp

    Google Scholar 

  • Chesworth W, Dejou J, Larroque P (1981) The weathering of basalt and relative mobility’s of major elements at Belbex, France. Geochim Cosmochim Acta 45:1235–1241

    Article  Google Scholar 

  • Cornelis J-Y, Ranger J, Eserentant I, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97:231–245

    Article  Google Scholar 

  • Daux V, Vtobidirt J, Hemond C, Petit J-C (1994) Geochemical evolution of basaltic rocks subjected to weathering: fate of the major elements, rare earth elements and thorium. Geochim Cosmochim Acta 58:4941–4954

    Article  Google Scholar 

  • Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swill alpine environments. Catena 45:19–47

    Article  Google Scholar 

  • Evans L, Barabash S, Lumsdon D, Gu X (2010) Application of chemical speciation modelling to studies on toxic element behaviour in soils. In: Hooda P (ed) Trace elements in soils. Wiley, Chichester, UK, pp 210–214, 596 pp

    Google Scholar 

  • Feng J-L (2010) Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots and the surrounding terra rosa over dolomite during chemical weathering. Chem Geol 271:112–132

    Article  Google Scholar 

  • Foth D (1990) Fundamentals of clay science. Wiley, New York, 360 pp

    Google Scholar 

  • Funare L, Vailonis A, Strawn D (2005) Polarized XANES and EXAFS spectroscopic investigation into copper (II) complexes on vermiculite. Geochim Cosmochim Acta 69:5219–5231

    Article  Google Scholar 

  • Fuss C, Driscoll C, Johnson C, Petras R, Fahey T (2011) Dynamics of oxidized and reduced iron in a northern hardwood forest. Biogeochemistry 104:103–119

    Article  Google Scholar 

  • Gaillardet J, Viers D, Dupré C (2004) Trace elements in river waters. In: Holland H, Turkian K (eds) Treatise on geochemistry, vol 5. Elsevier, Oxford, pp 225–260, Ch 509

    Google Scholar 

  • Hayes M, MacCarthy P, Malcom R, Swift R (eds) (1989) Humic substances II. Wiley, Chichester, UK, 765 pp

    Google Scholar 

  • He Y, Li D, Velde B, Yang Y, Huang C, Gong Z, Zhang G (2008) Clay minerals in a soil chronosequence derived from basalt on Hainan Island China. Geoderma 148:206–212

    Article  Google Scholar 

  • Hodson M, White P, Mead A, Broadley M (2005) Phylogenic variation in silicon compositions of plants. Ann Bot 96:1027–1046

    Article  Google Scholar 

  • Holmgren G, Meyer M, Chaney R, Daniels R (1993) Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J Environ Qual 22:335–348

    Article  Google Scholar 

  • Hooda P (ed) (2010) Trace elements in soils. Wiley, Chichester, UK, 596 pp

    Google Scholar 

  • Huang P, Gobran G (eds) (2005) Biogeochemistry of trace elements in the rizosphere. Elsevier, Amsterdam, 465 pp

    Google Scholar 

  • Huang C, Gong Z, He Y (2004) Elemental geochemistry of a soil chronosequence on basalt on northern Hainan Island, China. Chin J Geochem 23:245–254

    Article  Google Scholar 

  • Huang J-H, Iilgen G, Matner E (2011) Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany. Biogeochemistry 103:59–70

    Article  Google Scholar 

  • Isaure M-P, Manceau A, Geoffroy N, Laourdigue A, Tamura N, Marcus M (2005) Zinc mobility and speciation in soil covered in contaminated dredged sediment using micrometer-scale and bulk average X-ray fluorescence absorption and diffraction techniques. Geochem Cosmochim Acta 69:1173–1198

    Article  Google Scholar 

  • Isaure M-P, Sarret G, Harada E, Choi Y-E, Marcus M, Faraka S, Geoffry N, Pairis S, Susini J, Clements S, Manceau A (2010) Calcium promotes elimination as vaterite grains by tobacco trichomes. Geochim Cosmochim Acta 74:5817–5834

    Article  Google Scholar 

  • Jahan N, Guan H, Bestland E (2011) Arsenic remediation by Australian laterites. Environ Earth Sci 64:247–253

    Article  Google Scholar 

  • Jenny H (1994) Factors of soil formation. Dover, New York, 281 pp

    Google Scholar 

  • Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC, Boca Raton, FL, 364 pp

    Google Scholar 

  • Khan M, Zaide A, Goel R, Musarrat J (eds) (2011) Biomanagement of metal-contaminated soils, vol 20, Environmental pollution. Springer, Dordrecht, 512 pp

    Google Scholar 

  • Kirpichikova T, Manceau A, Lanson B, Marcus M, Jacquet T (2003) Speciation and mobility of Zn, Cu and Pb in truck farming soil contaminated by sewage irrigation. J Phys Chem 107:695–698

    Article  Google Scholar 

  • Knecht M, Goransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–469

    Article  Google Scholar 

  • Koren R, Mezuman V (1981) Boron absorption by clay minerals using a phenomenological equation. Clay Clay Miner 29:198–204

    Article  Google Scholar 

  • Lanson B, Drits V, Gaillot A-C, Silvester E, Plançon A, Manceau A (2002) Structure of heavy-metal sorbed birnessite: Part I results from X-ray diffraction. Am Miner 87:1631–1645, 69:1173–1198

    Google Scholar 

  • Lanson B, Marcus M, Farka S, Pafili F, Geoffroy N, Manceau A (2008) Formation of Zn-Ca phyllomanganate nanoparticles in grass roots. Geochim Cosmochim Acta 72:2478–2490

    Article  Google Scholar 

  • Lemarchand E, Schott J, Gaillardet J (2005) Boron isotopic fractionation related to boron absorption on humic acid and the structure of surface complexes formed. Geochim Cosmochim Acta 69:3519–3533

    Article  Google Scholar 

  • Lemarchand E, Schott J, Gaillardet J (2007) How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxide experiments. Earth Planet Sci Lett 260:277–296

    Article  Google Scholar 

  • Liu Y, Laird D, Barak P (1997) Release and fixation of ammonium and potassium under long-term fertility management. Soil Soc Am J 61:310–314

    Article  Google Scholar 

  • Loughnan F (1969) Chemical weathering of the silicate minerals. Elsevier, New York, 154 pp

    Google Scholar 

  • Manceau A, Marcus M, Tamura N, Proux O, Geoffroy N, Lanson B (2004) Natural speciation of Zn at the micrometer scale in clayey soil using X-ray fluorescence adsorption and diffraction. Geochim Cosmochim Acta 68:2467–2483

    Article  Google Scholar 

  • Manceau A, Tommasso C, Rims S, Geoffroy N, Chataigner D, Schlegel M, Tisserand D, Marcus M, Tamura N, Chen Z (2005) Natural speciation of Mn, Ni, Zn at eh micrometer scale in a clayey paddy using X-ray fluorescence, absorption and diffraction. Geochim Cosmochim Acta 69:4007–4014

    Article  Google Scholar 

  • Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772

    Article  Google Scholar 

  • Mareschal L, Bonnaud P, Turpault M-P, Ranger J (2010) Impact of common European tree species on the chemical and physiochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23

    Article  Google Scholar 

  • Markert B (1998) Instrumental multi-element analysis in plant material: a modern method in environmental chemistry and tropical system research. In: Wasserman J, Silvia-Filho E, VillasBoos R (eds) Environmental geochemistry in the tropics. Springer, Berlin, pp 75–95, 305 pp

    Chapter  Google Scholar 

  • Martin C, McCulloch M (1999) Nd/Sr isotopic and trace geochemistry of rive sediments and soils in fertilized catchment, New South Wales, Australia. Geochim Cosmochim Acta 63:287–305

    Article  Google Scholar 

  • Matocha C, Grove J, Karathanasis A (2010) Nitrogen fertilizer effects on soil mineralogy in an agrosystem. In: Abstracts annual ASA, CSSA, SSSA meeting, number 509

    Google Scholar 

  • Meijer E, Burrman P (2003) Chemical trends in a perhumid soil catena on the Turrialba volcano (Costa Rico). Geoderma 117:185–201

    Article  Google Scholar 

  • Melegy A, Slaninka I, Paces T (2011) Weathering fluxes of arsenic from small catchment in Slovak Republic. Environ Earth Sci 6:549–555

    Article  Google Scholar 

  • Morel J-L, Mench M, Guckert A (1987) Dynamique des métaux lourds dans la rhizosphere: rôle des exudats racinaires. Rev Ecol Biol Sol 24:485–492

    Google Scholar 

  • Oh N, Richter D (2005) Elemental translocation and loss from three highly weathered bed-rock profiles in the southeastern United States. Geoderma 126:5–25

    Article  Google Scholar 

  • Pedro G (1966) Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielle. C R Acad Sci D 262:1828–1831

    Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron (III) reduction and phosphorous solubilisation in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652

    Article  Google Scholar 

  • Piccolo A (ed) (1996) Humic substances in terrestrial ecosystems II. Elsevier, Amsterdam, 675 pp

    Google Scholar 

  • Pierce F, Dowdy R, Grigal D (1982) Concentrations of six trace metals in some major Minnesota soil series. J Environ Qual 11:416–422

    Article  Google Scholar 

  • Righi D, Cauvel A (1987) Podzols and podzolisation. AFES and INRA Publication, Paris, 227 pp

    Google Scholar 

  • Righi D, Reisänän M, Gillot F (1997) Clay mineral transformations in podzolised tills in central Finland. Clay Miner 32:531–544

    Article  Google Scholar 

  • Ross S (1994) Retention, transformation and mobility of toxic metal in soils. In: Ross S (ed) Toxic metals in soil–plant systems. Wiley, Chichester, UK, pp 94–210, 466 pp

    Google Scholar 

  • Ruhe R (1984) Soil-climate systems across the prairies in Midwestern USA. Geoderma 54:201–219

    Article  Google Scholar 

  • Schultz M, Vivit D, Schultz C, Fitzpatrick J, White A (2010) Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California. Soil Sci Soc Am J 74:550–564

    Article  Google Scholar 

  • Serret G, Isaure M-P, Marcus M, Harada E, Choi Y-E, Pairis S, Fakhara S, Manceau A (2007) Chemical forms of calcium in Ca, Zn and Ca, Cd containing grains excreted by tobacco trichomes. Can J Chem 88:738–746

    Article  Google Scholar 

  • Shaheen S (2009) Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma 153:61–68

    Article  Google Scholar 

  • Siffermann G (1973) Les sols de quelques régions volcaniques du Cameroun. Mémoires ORSTOM, no 66, 182 pp

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York, 277 pp

    Google Scholar 

  • Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257–269

    Article  Google Scholar 

  • Teutsch N, Erel Y, Halicz L, Chadwick OA (1999) The influence of rainfall on metal concentration and behavior in the soil—evidence from 210Pb and stable Pb isotopes. Geochim Cosmochim Acta 63(21):3499–3511(13)

    Google Scholar 

  • Velde B (2006) Preliminary study of heavy metal chemistry of shore and slikke clay deposits in the Brouage region: concentration of Cd, Sn and As as related to P. Cahiers Biol Mar 47:93–102

    Google Scholar 

  • Velde B, Barré P (2010) Soils, plants and clay minerals. Springer, Berlin, 344 pp

    Book  Google Scholar 

  • Walker L, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge, 456 pp

    Book  Google Scholar 

  • Wedephol H (1969) Handbook of geochemistry, vol I. Springer, New York

    Book  Google Scholar 

  • White A, Blum A, Schultz M, Vivit D, Stonestrum D, Larsen M, Murphy S, Eberl D (1998) Chemical weathering in a tropical watershed, Luquillo Mountains Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim Cosmochim Acta 62:209–236

    Article  Google Scholar 

  • White A, Schultz M, Vivit D, Blum A, Stonestrom A, Anderson S (2008) Geochemical weathering of a marine chronosequence, Santa Cruz California: interpreting rates and controls based upon soil concentration depth profiles. Geochim Cosmochim Acta 72:36–68

    Article  Google Scholar 

  • Williams L, Herwig R (2002) Exploring intra-crystalline B-isotope variations in mixed layer illite-smectite

    Google Scholar 

  • Zahrn D, Johnson A (1995) Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci Soc Am J 59:1444–1452

    Article  Google Scholar 

  • Tang J, Johanesson K (2005) Absorption of rare earth elements onto Carrizo sand: experimental investigations and modelling with surface complexation. Geochim Cosmochim Acta 69:5247–5261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, A., Velde, B.D. (2014). Soils: Retention and Movement of Elements at the Interface. In: Geochemistry at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31359-2_4

Download citation

Publish with us

Policies and ethics