Skip to main content

Weathering: The Initial Transition to Surface Materials and the Beginning of Surface Geochemistry

  • Chapter
  • First Online:
Geochemistry at the Earth’s Surface

Abstract

The primary configuration of the materials at the surface of the earth is one of contact of solids with water and air. In the air one finds oxygen and carbon dioxide, which are dissolved in small quantities in the water present. The incorporation of these gases and their interaction with water molecules develops aqueous solutions that have active oxygen present and a slightly acidic solution due to the dissolved carbon dioxide which produces the acidic state. The cause of a slightly acidic solution is the activity of hydrogen ions, H+. Water is the medium in which solid–solid transformations take place, either by dissolution and re-crystallization or by exchange of ions. The transformation process needs water to be accomplished at a reasonable rate. The greater the amount of water present the greater the reaction rate, because the solutions remain further from equilibrium with the solids and movement of ions and electrons is accelerated by the lack of equilibrium. The result of surface alteration and re-equilibration with surface chemical conditions is in general to segregate mineral elements into hydrous silicates, called clay minerals, to form transition metal (Fe and Mn) oxy-hydroxides, and to release a significant amount of ions as hydrated species in the aqueous altering solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard B (1995) Groundwater. In: Salbu B, Steinnes E (eds) Trace elements in natural waters. CRC, Boca Raton, FL, pp 151–172, 302 pp

    Google Scholar 

  • ANPA (2000) SEMINAT. Long-term dynamics of radionuclides in semi-natural environ-ments: derivation of parameters and modelling. Final report 1996-1999, European Commission-Nuclear Fission Safety Programme

    Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Article  Google Scholar 

  • Beauvais A, Mazaltarim D (1988) Etude des cuirasses latéritiques dans la région de Dembia-Zémio en Centrafrique, Pétrograpie, minéralogy et géochimie. Sci Géol Bull 41:47–69

    Google Scholar 

  • Boeglin J-L, Mazaltarim D (1989) Géochimie, degrés d’évolution et lithodépendance des cuirasses ferrugineuses de la région de Gaoua au Birkina Faso. Sci Géol 42:27–44

    Google Scholar 

  • Bonifacio E, Zanini E, Boerro V, Franchini-Angela M (1997) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75:33–51

    Article  Google Scholar 

  • Brantley S, White A (2009) Approaches to modelling weathered regoliths. In: Oelkers E, Schott J (eds) Thermodynamics and kinetics of water–rock interaction, vol 70, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 435–464, 569 pp

    Google Scholar 

  • Brantley S, Kulbicki J, White A (eds) (2008) Kinetics of water-rock interaction. Springer, New York, 833 pp

    Google Scholar 

  • Braun J-J, Pagel M, Herbillon M, Rosin C (1993) Mobilization and redistribution of REE and thorium in a syenite laterite profile. Geochim Cosmochim Acta 57:4419–4434

    Article  Google Scholar 

  • Braun J-J, Viers J, Dupré B, Polve M, Ndam J, Muller J-P (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon; The implication for the present dynamics of the soil covers in the humid tropical regions. Geochim Cosmochim Acta 62:273–299

    Article  Google Scholar 

  • Byrne R, Lee J, Bingler L (1991) Rare earth complexation by PO3- 4 ions in aqueous solution. Geochim Cosmochim Acta 55:2729–2735

    Article  Google Scholar 

  • Caillaud J, Proust D, Philippe S, Fontaine C, Fialin M (2009) Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 149:199–208

    Article  Google Scholar 

  • Chesworth W, Dejou J, Larroque P (1981) The weathering of basalt and relative mobility’s of major elements at Belbex, France. Geochim Cosmochim Acta 45:1235–1241

    Article  Google Scholar 

  • Degens E (1965) Geochemistry of sediments: a brief survey. Prentice Hall, Englewood Cliffs, NJ, 342 pp

    Google Scholar 

  • Dethier D (1986) Weathering rates and chemical flux from catchments in the Pacific Northwest. In: Coleman S, Dethier D (eds) Rates of chemical weathering of rocks and minerals. Academic, Dordrecht, pp 503–530, 630 pp

    Google Scholar 

  • Dixon J, Weed S (eds) (1996) Minerals in soil environments. Soil Science Society of America, Madison, WI, 997 pp

    Google Scholar 

  • Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swill alpine environments. Catena 45:19–47

    Article  Google Scholar 

  • Fontenaud A (1982) Les faciès d’altération supergène des roches ultrabasiques. Etude de deux massifs de lherzolites (Pyrénes France). Thesis, Univ Poitiers, 103 pp

    Google Scholar 

  • Gao Y, Mucci A (2001) Acid base relations, phosphate and arsenate complexation and the competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim Cosmochim Acta 65:2361–2378

    Article  Google Scholar 

  • Ildefonse P (1978) Mécanismes de l’altération d’une roche gabbroique du massif du Pallet (Loire Atlantique). Thesis, Univ Poitiers, France, 142 pp

    Google Scholar 

  • Jenny H (1994) Factors of soil formation. Dover, New York, 281 pp

    Google Scholar 

  • Kauer N, Grafe M, Singh B, Kennedy B (2009) Simultaneous incorporation of Cr, Zn, Cd, and Pb in the goethite structure. Clay Clay Miner 57:244–250

    Google Scholar 

  • Koppi A, Edis R, Field D, Geering H, Klessa D, Cockayne D (1996) Rare earth element trends and cerium–uranium–manganese associations in weathered rock from Koongarra, Northern Territory, Australia. Geochim Cosmochim Acta 60:1695–1707

    Article  Google Scholar 

  • Krauskopf K (1967) Introduction to geochemistry. McGraw Hill, New York, 721 pp

    Google Scholar 

  • Kühn W (1982) Ausbreitung radioaktiver Stoffe im Boden. In: Arbeitsgemeinschaft für Umweltfragen (ed) Das Umweltgespräch. Tagungsprotokoll: Radioökologie-symposium vom 15/16, Okt. 1981, Univ. Stuttgart, pp 76–99

    Google Scholar 

  • Lanson B, Drits V, Gaillot A-C, Silvester E, Plançon A, Manceau A (2002) Structure of heavy-metal sorbed birnessite: Part I results from X-ray diffraction. Am Miner 87:1631–1645, 69:1173–1198

    Google Scholar 

  • Leumbe Leumbe O, Bitom D, Tematio P, Temgoua E, Luca Y (2005) Etude des sols ferrallitiques à charactères andiques sur trachytes en zone de montagne humide tropical. Etude et Gestion des Sols 12:313–326

    Google Scholar 

  • Lipin B, McKay G (eds) (1989) Geochemistry of rare earth elements, vol 21, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, 348 pp

    Google Scholar 

  • Loughnan F (1969) Chemical weathering of the silicate minerals. Elsevier, New York, 154 pp

    Google Scholar 

  • Manceau A, Schlegel M, Musso M, Sole V, Gauthier C, Petot S, Troelard F (2000) Crystal chemistry of trace elements in natural and synthetic goethite. Geochim Cosmochim Acta 21:3643–3661

    Article  Google Scholar 

  • Manceau A, Marcus M, Tamura N, Proux O, Geoffroy N, Lanson B (2004) Natural speciation of Zn at the micrometer scale in clayey soil using X-ray fluorescence adsorption and diffraction. Geochim Cosmochim Acta 68:2467–2483

    Article  Google Scholar 

  • Mariano A (1989) Economic geology of rare earth elements. In: Lipin B, McKay G (eds) Geochemistry and mineralogy of rare earth elements, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 309–337, 347 pp

    Google Scholar 

  • Marker A, de Oliviera J (1990) The formation of rare earth element scavenger minerals in the weathering products derived from alkaline rocks of S-E Bahia, Brazil. In: Geochemistry of the Earth’s surface and mineral formation. 2nd International Symposium Aix en Provence, pp 373–374

    Google Scholar 

  • Martinez Cortez A, Carcia-Rodeja Gayoso E, Novoa Munoz J, Pontevedra Pombal X, Buurman P, Terribile F (2003) Distribution of some selected major and trace elements in four Italian soils developed on the Gauro and Vico volcanoes. Geoderma 117:215–224

    Article  Google Scholar 

  • Mason B (1966) Principles of geochemistry, 3rd edn. Wiley, New York, 329 pp

    Google Scholar 

  • McFarlane M (1976) Laterite and landscape. Academic, London, 151 pp

    Google Scholar 

  • McKay G (1989) Partitioning of rare earth elements between major silicate minerals and basaltic melts. In: Lipin B, McKay G (eds) Geochemistry and mineralogy of rare earth elements, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 45–77, 348 pp

    Google Scholar 

  • McLennan S (1989) Rare earth elements in sedimentary rocks: influences of provenance and sedimentary processes. In: Lipin B, McKay G (eds) Geochemistry and mineralogy of rare earth elements, vol 21, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 169–200, Ch 7, 348 pp

    Google Scholar 

  • McQueen K (2008) Regolith geochemistry. In: Scott K, Pain C (eds) Regolith science. Springer, Dordrecht, pp 73–104, 461 pp

    Google Scholar 

  • Meunier A (1980) Les mécanismes de l’altération du granites et le rôle des microsystèmes, Etude des arènes du massif granitique de Parthenay (Deux Sevres). Mém Soc Géol Fr 146:1–80

    Google Scholar 

  • Mosser C (1980) Etude géochimique de quelques éléments traces dans les argiles des altérations et des sédiments. Sci Géol Mem 83, 386 pp

    Google Scholar 

  • Navarrete I, Tsutsuki K, Kondo R, Asio V (2008) Genesis of soils across a late Quaternary volcanic landscape in the humid tropical island of Leyte, Philippines. Aust J Soil Res 46:403–414

    Article  Google Scholar 

  • Nesbit H, Markovics G (1997) Weathering of granodioritic crust, long-term storage of elements in weathering profiles and petrogenesis of siliclastic sediments. Geochim Cosmochim Acta 61:1653–1670

    Article  Google Scholar 

  • Oelkers E, Schott J (2009) Thermodynamics and kinetics of water–rock interaction, vol 70, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, 569 pp

    Google Scholar 

  • Oh N, Richter D (2005) Elemental translocation and loss from three highly weathered bed-rock profiles in the southeastern United States. Geoderma 126:5–25

    Article  Google Scholar 

  • Ohta A, Kawabe I (2001) REE(III) adsorption onto Mn dioxide and Fe oxyhydroxide: Ce(III) oxidation by MnO2. Geochim Cosmochim Acta 65:695–402

    Article  Google Scholar 

  • Palissy B de (1563) Discours admirables de la nature, 158 pp, editor unknown, re-published under Oeuvres Completes de Bernard Palissy P-A Cap Lib. Aci. Blanchard Paris 1961

    Google Scholar 

  • Peackock C, Sherman D (2004) Vanadium (V) adsorption onto goethite (FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 68:1723–1733

    Article  Google Scholar 

  • Pedro G (1966) Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielle. C R Acad Sci D 262:1828–1831

    Google Scholar 

  • Pion J-C (1979) Altération des massifs cristallins basiques en zone tropical sèche. Sci Géol Mem 57, 230 pp

    Google Scholar 

  • Proust D (1976) Etude de l’altération des amphibolites de la Roche-l’Abeille: évolutions chimiques et minéralogiques des plagioclases et hornblendes. Thesis, Univ Poitiers, 197 pp

    Google Scholar 

  • Proust D (1985) Amphibole weathering in a glaucophane schist (Ile de Groix, Morbhian). Clay Miner 20:161–170

    Article  Google Scholar 

  • Rasmussen C, Dahlgren R, Southard R (2010) Basalt weathering and pedogenesis across an environmental gradient in southern Cascade Range California. Geoderma 154:473–485

    Article  Google Scholar 

  • Ritchie JC, Rudolph WK (1970) Distribution of fallout and natural gamma radionuclides in litter, humus and surface mineral soil layers under natural vegetation in the Great Smoky Mountains, North Carolina-Tennessee. Health Phys 18:479–489

    Article  Google Scholar 

  • Roy S, Gaillardet J, Allègre C (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292

    Article  Google Scholar 

  • Schultz M, Vivit D, Schultz C, Fitzpatrick J, White A (2010) Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California. Soil Sci Soc Am J 74:550–564

    Article  Google Scholar 

  • Scott K, Pain C (2008) Regolith science. Springer, Dordrecht, 461 pp

    Google Scholar 

  • Singh P, Rajamani V (2001) REE geochemistry of recent clastic sediments from Kaveri floodplains, southern India: implications to source area weathering and sedimentary processes. Geochim Cosmochim Acta 65:3093–3108

    Article  Google Scholar 

  • Squire HM, Middleton LJ (1966) Behavior of Cs-137 in soils and pastures. A long term experiment. Radiat Bot 6:413–423

    Article  Google Scholar 

  • Tardy Y (1993) Pétrologie des latérites et des sols tropicaux. Masson, Paris, 457 pp

    Google Scholar 

  • Taylor G, Eggleton R (2001) Regolith geology and geomorphology. Wiley, Chichester, UK, 376 pp

    Google Scholar 

  • Temgoua E (2002) Cuirassement ferrugineux de bas versants en zone forestière du Sud-Cameroun. Mem Geol (Lausanne) 38, 134 pp

    Google Scholar 

  • Valeton I (1972) Bauxites, vol 1, Developments soil science. Elsevier, Amsterdam, 226 pp

    Google Scholar 

  • Velde B, Barré P (2010) Soils, plants and clay minerals. Springer, Berlin, 344 pp

    Book  Google Scholar 

  • Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin, 405 pp

    Book  Google Scholar 

  • Wedephol H (1969) Handbook of geochemistry, vol I. Springer, New York

    Book  Google Scholar 

  • White A, Blum A, Schultz M, Vivit D, Stonestrum D, Larsen M, Murphy S, Eberl D (1998) Chemical weathering in a tropical watershed, Luquillo Mountains Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim Cosmochim Acta 62:209–236

    Article  Google Scholar 

  • White A, Schultz M, Vivit D, Blum A, Stonestrom A, Anderson S (2008) Geochemical weathering of a marine chronosequence, Santa Cruz California: interpreting rates and controls based upon soil concentration depth profiles. Geochim Cosmochim Acta 72:36–68

    Article  Google Scholar 

  • Zibold G, Drissner J, Klemt E, Konopleva AV, Konoplev AV, Miller R (1997) Biologische Verfügbarkeit von Cäsium-Radionukliden in Waldgebieten des nördlichen und südlichen Voralpenlandes. In: Honikel KO, Hecht H (eds) Radiocäsium in Wald und Wild, vol 2. Veranstaltung, Kulmbach, 10/11 June 1997

    Google Scholar 

  • Mason B (1958) Principles of geochemistry. Wiley, New York, 329 pp

    Google Scholar 

  • Martínez Cortizas A, Garcia-Rodeja Gayoso E, Novao Munuoz J, Ponteverdra Pombal X, Buurman P, Terrible F (2003) Distribution of some selected major and trace elements in four Italian soils developed from the deposits of the Gauro and Vico volcanoes. Geoderma 117:215–226

    Google Scholar 

  • Mileti FA, Langella G, Prins MA, Vingiani S, Terribile F (2013) The hidden nature of parent material in soils of Italian mountain ecosystems. Geoderma 207–208:291–309

    Article  Google Scholar 

  • Jones B (1966) Geochemical evolution of closed basin water in the Western Great Basin. In: Rau J (ed) Second symposium of salt, Northern Ohio Geological Society, pp 181–193, 443 pp

    Google Scholar 

  • Fendorf SE (1995) Surface-reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, A., Velde, B.D. (2014). Weathering: The Initial Transition to Surface Materials and the Beginning of Surface Geochemistry. In: Geochemistry at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31359-2_3

Download citation

Publish with us

Policies and ethics