Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 589 Accesses

Abstract

In this chapter the ongoing effort to develop a system for magnetic resonance imaging in ultra-low magnetic fields is discussed. The following sections will introduce the concepts of the technique along with some background. The present status of our system will be described along with some preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.megmri.net

References

  1. P. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  Google Scholar 

  2. F. Bloch, W.W. Hanson, M. Packard, The nuclear induction experiment. Phys. Rev. 70, 474–485 (1946)

    Article  Google Scholar 

  3. E.M. Purcell, H.C. Torrey, R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946)

    Article  Google Scholar 

  4. H. Wada, M. Sekino, H. Ohsaki, T. Hisatsune, H. Ikehira, T. Kiyoshi, Prospect of high-field MRI. IEEE Trans. Appl. Supercond. 20, 115–122 (2010)

    Article  Google Scholar 

  5. M.P. Augustine, A. Wong-Foy, J.L. Yarger, M. Tomaselli, A. Pines, D.M. Ton That, J. Clarke, Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device. Appl. Phys. Lett. 72, 115–122 (1998)

    Article  Google Scholar 

  6. D.M. TonThat, M. Ziegeweid, Y.-Q. Song, E.J. Munson, S. Appelt, A. Pines, J. Clarke, SQUID detected NMR of laser-polarized xenon at 4.2 K and at frequencies down to 200 Hz. Chem. Phys. Lett. 272, 245–249 (1997)

    Article  Google Scholar 

  7. Y.S. Greenberg, Applications of SQUIDs to NMR. Rev. Mod. Phys. 1, 175–222 (1998)

    Article  Google Scholar 

  8. H.C. Seton, J.M.S. Hutchison, D.M. Bussell, A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm. Meas. Sci. Technol. 8, 198–207 (1997)

    Article  Google Scholar 

  9. V.S. Zotev, A.N. Matlachov, P.L. Volegov, A.V. Urbaitis, M.A. Espy, R.H. Kraus, SQUID-based instrumentation for ultralow-field MRI. Supercond. Sci. Technol. 20, 367–373 (2007)

    Article  Google Scholar 

  10. M. Burghoff, H.H. Albrecht, S. Hartwig, I. Hilschenz, R. Körber, T.S. Thömmes, H.J. Scheer, J. Voigt, L. Trahms, SQUID system for MEG and low field magnetic resonance imaging. Metrol. Meas. Syst. 16, 371–375 (2009)

    Google Scholar 

  11. H. Dong, Y. Zhang, H. Krause, X. Xie, A. Offenhäusser, Low field MRI detection with tuned HTS SQUID magnetometer. IEEE Trans. Appl. Supercond. 21, 509–513 (2011)

    Article  Google Scholar 

  12. S. Liao, K. Huang, H. Yang, C. Yen, M.J. Chen, H. Chen, H. Horng, S.Y. Yang, Characterization of tumors using high-\(t_c\) superconducting quantum interference device detected nuclear magnetic resonance and imaging. Appl. Phys. Lett. 97, 263701 (2010)

    Article  Google Scholar 

  13. H.K. McIsaac, D.S. Thordarson, R. Shafran, S. Rachman, G. Poole, Claustrophobia and the magnetic resonance imaging procedure. J. Behav. Med. 21, 255–268 (1998)

    Article  Google Scholar 

  14. S.K. Lee, M. Moßle, W. Myers, N. Kelso, A.H. Trabesinger, A. Pines, J. Clarke, SQUID-detected MRI at 132 \(\mu \)T with \(T_1\)-weighted contrast established at 10 \(\mu \)T-300 mT. Magn. Reson. Med 53, 9–14 (2004)

    Article  Google Scholar 

  15. S.E. Busch, Ultra-Low Field MRI of Prostate Cancer Using SQUID Detection. Ph.D. Thesis, University of California at Berkeley, 2011.

    Google Scholar 

  16. P.E. Magnelind, J.J. Gomez, A.N. Matlashov, T. Owens, J.H. Sandin, P.L. Volegov, M.A. Espy, Co-registration of interleaved meg and ulf mri using a 7 channel low-\(T_c\) system. IEEE. Trans. Appl. Supercond. 21, 456–460 (2011)

    Article  Google Scholar 

  17. E.M. Haache, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, New York, 1999)

    Google Scholar 

  18. R. McDermott, A.H. Trasbinger, M. Mück, E.L. Hahn, A. Pines, J. Clarke, Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247–2249 (2002)

    Article  Google Scholar 

  19. J. Clarke, M. Hatridge, M. Möble, SQUID-detected magnetic resonance imaging in microtesla fields. Annu. Rev. Biomed. Eng. 9, 389–413 (2007)

    Article  Google Scholar 

  20. M. Jönsson, Ultra-Low Field Nuclear Magnetic Resonance Using High-\(t_c\) SQUIDs (Chalmers University of Technology, Master’s Thesis, 2011)

    Google Scholar 

  21. W.R. Myers, Potential Applications of Microtesla Magnetic Resonance Imaging Detected Using a Superconducting Quantum Interference Device. Ph.D. Thesis, University of California at Berkeley, 2006

    Google Scholar 

  22. Fast De-Trapping of Magnetic Flux from High Temperature Superconducting Devices Master’s Thesis Chalmers University of Technology,2010

    Google Scholar 

  23. C.E. Cunningham, T.R. DeYoung, T.A. Bouma, Laser light heating for low-noise temperature control in SQUID applications. Phys. B 284, 2111–2112 (2000)

    Article  Google Scholar 

  24. H.L. Dewing, E.K.H. Salje, The effect of the superconducting phase transition on the near-infrared absorption of \(\text{ YBa}_2 \text{ Cu}_3 \text{ O}_{7-\delta }\). Supercond. Sci. Technol. 5, 50–53 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öisjöen, F. (2013). Ultra Low Field Magnetic Resonance Imaging. In: High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31356-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31356-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31355-4

  • Online ISBN: 978-3-642-31356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics