Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A neuron is the most fundamental cell of the brain and generates electrical activity in order to communicate with other neurons or parts of the body. Magnetoencephalography (MEG) is the measurement of the magnetic fields generated by neural activity in the brain. The corresponding technique for the electric field is electroencephalography (EEG). EEG has a long history and the first findings were reported by Richard Caton in 1875 when he measured electrical activity in the brains of rabbits and monkeys. Berger was the first to record a human EEG (he also gave the technique its name) in 1929. Since these remarkable achievements, EEG has evolved to become an important tool and is widely used for both scientific and clinical purposes. In the clinic it is particularly important for characterization of epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.C. Hansen, M.L. Kringelbach, R. Salmelin (eds.), MEG: An Introduction to Methods (Oxford University Press, New York, 2010)

    Google Scholar 

  2. R. Caton, The electric currents of the brain. Br. Med. J. 2, 278 (1875)

    Google Scholar 

  3. H. Berger, Über das electrenphalogramm des Menschen. Arch. Physchiatr. Nervenkr. 87, 527–570 (1929)

    Article  Google Scholar 

  4. G.L. Barkley, C. Baumgartner, MEG and EEG in epilepsy. J. Clin. Neurophysiol. 20, 163–178 (2003)

    Article  Google Scholar 

  5. D. Cohen, Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161, 784–786 (1968)

    Article  Google Scholar 

  6. R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964)

    Article  Google Scholar 

  7. D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)

    Article  Google Scholar 

  8. G.L. Romani, P. Rossini, Neuromagnetic functional localization: principles, state of the art, and perspectives. Brain Topogr. 1, 5–21 (1988)

    Article  Google Scholar 

  9. A.I. Ahonen, M.S. Hämäläinen, M.J. Kajola, J.E.T. Knuutila, P.P. Laine, O.V. Lounasmaa, L.T. Parkkonen, J.T. Simola, C.D. Tesche, 122-channel SQUID instrument for investigating the magnetic signals from the human brain. Phys. Scr. T49, 198–205 (1993)

    Article  Google Scholar 

  10. M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993)

    Article  Google Scholar 

  11. C. del Gratta, V. Pizzella, F. Tecchio, G.L. Romani, Magnetoencephalography-a noninvasive brain imaging method with 1 ms time resolution. Rep. Prog. Phys. 64, 1759–1814 (2001)

    Article  Google Scholar 

  12. N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    Article  Google Scholar 

  13. M.E. Phelps, J. Hoffman, N.A. Mullani, M.M. Ter-Pogossian, Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975)

    Google Scholar 

  14. K. Iramina, S. Ueno, S. Matsuoka, MEG and EEG topography of frontal midline theta rhythm and source localization. Brain Topogr. 8, 329–331 (1996)

    Article  Google Scholar 

  15. Y.C. Okada, A. Lahteenmäki, C. Xu, Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin. Neurophysiol. 110, 230–238 (1999)

    Article  Google Scholar 

  16. R.M. Leahy, J.C. Moasher, M.E. Spencer, M.X. Huang, J.D. Lewine, A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroenceph. Clin. Neurophysiol. 107, 159–173 (1998)

    Article  Google Scholar 

  17. M.S. Dilorio, K.Y. Yang, S. Yoshizumi, Biomagnetic measurements using low-noise integrated SQUID magnetometers operating in liquid nitrogen. Appl. Phys. Lett. 67, 1926–1928 (1995)

    Article  Google Scholar 

  18. Y. Zhang, Y. Tavrin, M. Mück, A.I. Braginski, C. Heiden, S. Hampson, C. Pantev, T. Elbert, Magnetoencephalography using high temperature rf SQUIDs. Brain Topogr. 5, 379–382 (1993)

    Article  Google Scholar 

  19. H.J. Barthelmess, M. Halverscheid, B. Schiefenhovel, E. Heim, M. Schilling, R. Zimmermann, Low-noise biomagnetic measurements with a multichannel dc-SQUID system at 77 K. IEEE. Trans. Appl. Supercond. 11, 657–660 (2001)

    Article  Google Scholar 

  20. D. Drung, F. Ludwig, W. Muller, U. Steinhoff, L. Trahms, H. Koch, Y.Q. Shen, M.B. Jensen, P. Vase, T. Holst, T. Freltoft, G. Curio, Integrated \(\text{ YBa}_2 \text{ Cu}_3 \text{ O}_{7-x}\) magnetometer for biomagnetic measurements. Appl. Phys. Lett. 68, 1421–1423 (1996)

    Article  Google Scholar 

  21. E.J. Tarte, P.E. Magnelind, A.Y. Tzalenchuk, A. Lõhmus, D.A. Ansell, M.G. Blamire, Z.G. Ivanov, R.E. Dyball, High \({T_c}\) SQUID systems for magnetophysiology. Phys. C 368, 50–54 (2002)

    Article  Google Scholar 

  22. P.E. Magnelind, D. Winkler, E. Hanse, E.J. Tarte, Magnetophysiology of Brain slices using an HTS SQUID magnetometer system, in Applications of Nonlinear Dynamics, ed. by V. In, P. Longhini, A. Palacios (Berlin, Understanding Complex Systems (Springer, 2009), pp. 323–330

    Chapter  Google Scholar 

  23. J.F. Stein, C.J. Stoodley, Neuroscience an Introduction (Wiley, Chichester, 2006)

    Google Scholar 

  24. J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 1995)

    Book  Google Scholar 

  25. J. Sarvas, Basic mathematical and electromagentic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 (1987)

    Article  Google Scholar 

  26. R. Hari, R. Salmelin, Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 20, 44–49 (1997)

    Article  Google Scholar 

  27. W.J. Lutter, M. Maier, R.T. Wakai, Development of MEG sleep patterns and magnetic auditory evoked responses during early infancy. Clin. Neurophysiol. 117, 522–530 (2006)

    Article  Google Scholar 

  28. N.R. Simon, I. Mansheden, F.H. Lopes da Silva, A MEG study of sleep. Brain Res. 860, 64–76 (2000)

    Article  Google Scholar 

  29. E. Zamrini, F. Maestu, E. Pekkonen, M. Funke, J. Makela, M. Riley, R. Bajo, G. Sudre, A. Fernandez, N. Castellanos, F. del Pozo, C.J. Stam, B.W. van Dijk, A. Bagic, J.T. Becker, Magnetoencephalography as a putative marker for Alzheimer’s disease. Int. J. Alzheimers Dis. 280289, 2011 (2011)

    Google Scholar 

  30. J.L.W. Bosboom, D. Stoffers, C.J. Stam, B.W. van Dijk, J. Verbunt, H.W. Berendse, ECh. Wolters, Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study. Clin. Neurophysiol. 117, 2521–2531 (2006)

    Article  Google Scholar 

  31. W. Klimesch, EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)

    Article  Google Scholar 

  32. S. Raghavachari, M.J. Kahana, D.S. Rizzuto, J.B. Caplan, M.P. Kirschen, B. Bourgeois, J.R. Madsen, J.E. Lisman, Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001)

    Google Scholar 

  33. C.D. Tesche, J. Karhu, Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA 97, 919–924 (1999)

    Article  Google Scholar 

  34. M.J. Kahana, D. Seelig, J.R. Madsen, Theta returns. Curr. Opin. Neurobiol. 11, 739–744 (2001)

    Article  Google Scholar 

  35. C. Ciulla, T. Takeda, H. Endo, MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topogr. 11, 211–222 (1999)

    Article  Google Scholar 

  36. S. Salenius, M. Kajola, W.L. Thompson, S. Kosslyn, R. Hari, Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroenceph. Clin. Neurophysiol. 95, 453–462 (1995)

    Article  Google Scholar 

  37. H. Petsche, S. Kaplan, A. von Stein, O. Filz, The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks. Int. J. Phsychophysiol. 26, 77–97 (1997)

    Article  Google Scholar 

  38. S.N. Baker, Oscillatory interactions between sensorimotor cortex and the periphery. Curr. Opin. Neurobiol. 17, 649–655 (2007)

    Article  Google Scholar 

  39. J.R. Hughes, Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behaviour. Epilepsy Beh. 13, 25–31 (2008)

    Article  Google Scholar 

  40. J.M. Kilner, S.N. Baker, S. Salenius, R. Hari, R.N. Lemon, Human cortical muscle coherence is directly related to specific motor parameters. J. Neurosci. 20, 8838–8845 (2000)

    Google Scholar 

  41. J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, A. Kübler, An MEG-based brain-computer interface (BCI). Neuroimage 36, 581–593 (2007)

    Article  Google Scholar 

  42. F. Oisjöen, J. F. Schneiderman, G. A. Figueras, M. L. Chukharkin, A. Kalabukhov, A. Hedström, M. Elam, and D. Winkler. High-\(T_c\) superconducting quantum interference device recordings of spontaneous brain activity: Towards high-\(T_c\) magnetoencephalography. Appl. Phys. Lett., 100(132601), 2012. 10.1063/1.3698152.

    Google Scholar 

  43. K. Jerbi, J.C. Mosher, S. Baillet, R.M. Leahy, On MEG modelling using multipolar expansions. Phys. Med. Biol. 47, 523–555 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öisjöen, F. (2013). Magnetoencephalography. In: High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31356-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31356-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31355-4

  • Online ISBN: 978-3-642-31356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics