Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter the results of the research related to magnetic immunoassays (MIAs) are presented. The relevant background related to the field is introduced before the experimental details and results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Yalow, S.A. Berson, Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39(7), 1157–1175 (1960)

    Article  Google Scholar 

  2. R.M. Lequin, Enzyme immunoassay (EIA)/Enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005)

    Article  Google Scholar 

  3. E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quant. assay immunoglobul. G. Immunochem. 8(9), 871–874 (1971)

    Google Scholar 

  4. B.K. van Weeman, A.H.W.M. Schuurs, Immunoassay using antigen enzyme conjugates. FEBS Lett. 15(3), 232–236 (1971)

    Article  Google Scholar 

  5. R. Kötitz, H. Matz, L. Trahms, H. Koch, SQUID based remanence measurements for immunoassays. IEEE Trans. Appl. Supercond. 7(2), 3678–3681 (1997)

    Article  Google Scholar 

  6. K. Enpuku, T. Minotani, M. Hotta, A. Nakahodo, Application of high \(T_c\) SQUID magnetometer to biological immunoassays. IEEE Trans. Appl. Supercond. 11(1), 661–664 (2001)

    Article  Google Scholar 

  7. K. Enpuku, A. Ohba, K. Inoue, T.Q. Yang, Application of HTS SQUIDs to biological immunoassays. Phys. C 412–414, 1473–1479 (2004)

    Article  Google Scholar 

  8. D. Eberbeck, C. Bergemann, F. Wiekhorst, U. Steinhoff, L. Trahms, Quantification of specific bindings of biomolecules by magnetorelaxometry. J. Nanobiotechnol. 6(4), (2008)

    Google Scholar 

  9. D. Eberbeck, C. Bergemann, S. Hartwig, U. Steinhoff, L. Trahms, Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry. J. Magn. Magn. Mater. 289, 435–438 (2005)

    Article  Google Scholar 

  10. M. Strömberg, J. Göransson, K. Gunnarsson, M. Nilsson, P. Svedlindh, M. Strømme, Sensitive molecular diagnastics using volume-amplified magnetic nanobeads. Nanoletters 8(3), 816–821 (2008)

    Google Scholar 

  11. T.Z.G. de la Torre, A. Mezger, D. Herthnek, C. Johansson, P. Svedlindh, M. Nilsson, M. Strømme, Detection of rolling circle amplified DNA molecules using probe-tagged magnetic nanobeads in a portable AC susceptometer. Biosens. Bioelectron. 29, 195–199 (2011)

    Article  Google Scholar 

  12. H.L. Grossman, W.R. Myers, V.J. Vreeland, R. Bruehl, M.D. Alper, C.R. Bertozzi, J. Clarke, Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA 101(1), 129–134 (2004)

    Article  Google Scholar 

  13. C. Yang, S. Yang, J. Chieh, H. Horng, C. Hong, H. Yang, K.H. Chen, B.Y. Shih, T. Chen, M. Chiu, Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem. Neurosci. 2, 500–505 (2011)

    Article  Google Scholar 

  14. S.Y. Yang, J.J. Chieh, W.C. Wang, C.Y. Yu, C.B. Lan, J.H. Chen, H.E. Horng, C.-Y. Hong, H.C. Yang, W. Huang, Ultra-highly sensitive and wash-free bio-detection of H5N1 virus by immunomagnetic reduction assays. J. Virological. Methods 153, 250–252 (2008)

    Article  Google Scholar 

  15. A.P. Astalan, F. Ahrentorp, C. Johansson, K. Larsson, A. Krozer, Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles. Biosens. Bioelectron. 19, 945–951 (2004)

    Article  Google Scholar 

  16. A.P. Astalan, C. Jonasson, K. Petersson, J. Blomgren, D. Ilver, C. Johansson, Magnetic response of thermally blocked magnetic nanoparticles in a pulsed magnetic field. J. Magn. Magn. Mater. 311, 166–170 (2007)

    Article  Google Scholar 

  17. A.P. Astalan, J. Blomgren, K. Petersson, C. Jonasson, D. Ilver, C. Johansson, A. Krozer, Brownian relaxation measurements in the time domain of thermally blocked magnetic nanoparticles. Eurosensors XX proceedings, T3C–P6, 2006

    Google Scholar 

  18. H.-J. Krause, N. Wolters, Y. Zhang, A. Offenhäusser, P. Miethe, M. Meyer, M. Hartmann, M. Keusgen, Magnetic particle detection by frequency mixing for immunoassay applications. J. Magn. Magn. Mater. 311, 436–444 (2007)

    Article  Google Scholar 

  19. P.I. Nikitin, P.M. Vetoshko, T.I. Ksenevich, New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater. 311, 445–449 (2007)

    Article  Google Scholar 

  20. L. Ejsing, M.F. Hansen, K. Menon, H.A. Ferreira, D.L. Graham, P.P. Freitas, Planar Hall effect sensor for magnetic micro and nanobead detection. Appl. Phys. Lett. 84(23), 4729–4731 (2004)

    Article  Google Scholar 

  21. P.-A. Besse, G. Boero, M. Demierre, V. Pott, R. Popovic, Detection of a single magnetic microbead using a miniaturized silicon hall sensor. Appl. Phys. Lett. 80(22), 4199–4201 (2002)

    Article  Google Scholar 

  22. S.-H. Lee, D.D. Stubbs, J. Cairney, W.D. Hunt, Rapid detection of bacterial spores using a quartz crystal microbalance (QCM) immunoassay. IEEE Sens. J. 5(4), 737–743 (2005)

    Article  Google Scholar 

  23. K. Yokohama, K. Ikebukuro, E. Tamiya, I. Karube, N. Ichiki, Y. Arikawa, Highly sensitive quartz immunosensors for multisample detection of herbicides. Anal. Chim. Acta 304, 139–145 (1995)

    Article  Google Scholar 

  24. Y.-C. Liu, C.-M. Wang, K.-P. Hsiung, Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Anal. Biochem. 299, 130–135 (2001)

    Article  Google Scholar 

  25. J. Homola, Present and future surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (1998)

    Article  Google Scholar 

  26. E.M. Larsson, J. Alegret, M. Käll, D.S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for applications as ultrasensitive biosensors. Nano Lett. 5, 1256–1263 (2007)

    Article  Google Scholar 

  27. S. Chen, M Svedendahl, M. Käll, L Gunnarsson, A. Dimitriev, Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology 20, 434015 (2009)

    Article  Google Scholar 

  28. M.P. Jonsson, A.B. Dahlin, P. Jönsson, F. Höök, Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases 3, FD30-FD40 (2009)

    Google Scholar 

  29. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167–R181 (2003)

    Article  Google Scholar 

  30. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)

    Article  Google Scholar 

  31. R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596–606 (1997)

    Article  Google Scholar 

  32. N.F. Borrelli, A.A. Luderer, J.N. Panzarino, Hysteresis heating for the treatment of tumours. Phys. Med. Biol. 29(5), 487–494 (1984)

    Article  Google Scholar 

  33. N.A. Brusentsov, L.V. Nikitin, T.N. Brusentsova, A.A. Kuznetsov, F.S. Bayburtskiy, L.I. Shumakov, N.Y. Jurchenko, Magnetic fluid hyperthermia of the mouse experimental tumor. J. Magn. Magn. Mater. 252, 378–380 (2002)

    Article  Google Scholar 

  34. H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 37, 941–949 (2006)

    Article  Google Scholar 

  35. S. Morisada, N. Miyata, K. Iwahori, Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids. J. Microbio. Meth. 51, 141–148 (2002)

    Article  Google Scholar 

  36. A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J Mat Sci: Mat. Med. 15, 493–496 (2004)

    Article  Google Scholar 

  37. M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2(3), 22–32 (2007)

    Article  Google Scholar 

  38. C. Alexiou, R.J. Klein, W. Arnold, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lübbe, Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000)

    Google Scholar 

  39. H. Brändén, J. Andersson, Grundläggande immunologi (Studentlitteratur, Lund, 1998)

    Google Scholar 

  40. P. Lydyard, A. Whelan, M.W. Fanger, Immunology (Garland Science/BIOS Scientific publisher, London, 2004)

    Google Scholar 

  41. http://www.genwaybio.com/all_elisa_kits.php

  42. http://www.promokine.info/products/antibodies-elisa-kits/elisa-kits/

  43. http://www.cellsignal.com/ddt/elisa_line.html

  44. S. Mukherjee, A. Casadevall, Sensitivity of sandwich enzyme-linked immunosorbent assay for Cryptococcus neoformans polysaccharide antigen is dependent on the isotypes of the capture and detection antibodies. J. Clin. Microbiol. 33(3), 765–768 (1995)

    Google Scholar 

  45. H. Ueda, K. Tsumoto, K. Kubota, E. Suzuki, T. Nagamune, H. Nishimura, P.A. Schueler, G. Winter, I. Kumagai, W.C. Mahoney, Open sandwich ELISA: A novel immunoassay based on the interchain interaction of antibody variable region. Nat. Biotechnol. 14, 1714–1718 (1996)

    Article  Google Scholar 

  46. J. MacCarthy, Detecting Pathogens in Food (Woodhead Publishing Limited, Cambridge, 2003)

    Google Scholar 

  47. C. Björkman, O.J.M. Holmdal, A. Uggla, An indirect enzyme-linked immunoassay (ELISA) for demonstration of antibodies to neospora caninum in serum and milk of cattle. Vet. Parasitol. 68, 251–260 (1997)

    Article  Google Scholar 

  48. A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  49. V. Schaller, Magnetic multicore nanoparticles: properties and applications. Ph.D. Thesis, Chalmers University of Technology, 2010.

    Google Scholar 

  50. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997)

    Google Scholar 

  51. C.G. Granqvist, R.A. Buhrman, Ultrafine metal particles. J. Appl. Phys. 47(5), 2200–2219 (1976)

    Article  Google Scholar 

  52. L. Néel, Compt. Rend. 228(8), 664–666 (1949)

    Google Scholar 

  53. C. Johansson, Magnetic studies of magnetic liquids. Ph.D. Thesis, Department of physics, Chalmers University of Technology and University of Göteborg, 1993.

    Google Scholar 

  54. W.F. Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  Google Scholar 

  55. M.I. Shliomis, Magnetic fluids. Sov. Phys. Uspekhi 17(2), 153–169 (1974)

    Article  Google Scholar 

  56. C.P. Bean, J.D. Livingston, Superparamagnetism. J. Appl. Phys. 30(4), 120S–129S (1959)

    Article  Google Scholar 

  57. F. Öisjöen, J.F. Schneiderman, M. Zaborowska, S. Karthikeyan, P. Magnelind, A. Kalabukhov, K. Petersson, A.P. Astalan, C. Johansson, D. Winkler, Fast and sensitive measurement of specific antigen-antibody binding reactions with magnetic nanoparticles and HTS SQUID. IEEE Trans. Appl. Supercond. 19, 848–852 (2009)

    Article  Google Scholar 

  58. F. Mugele, J.-C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter. 17, R705–R774 (2005)

    Article  Google Scholar 

  59. V. Schaller, A. Sanz-Velasco, A. Kalabukhov, J.F. Schneiderman, F. Öisjöen, A. Jesorka, A.P. Astalan, A. Krozer, C. Rusu, P. Enoksson, D. Winkler, Towards an electrowetting-based digital microfluidic platform for magnetic immunoassays. Lab on chip 9, 3433–3436 (2009)

    Article  Google Scholar 

  60. M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725–1726 (2000)

    Article  Google Scholar 

  61. P. Paik, V.K. Pamula, R.B. Fair, Rapid droplet mixers for digital microfluidic systems. Lab Chip 3, 253–259 (2003)

    Article  Google Scholar 

  62. S.K. Cho, H. Moon, C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12, 70–80 (2003)

    Article  Google Scholar 

  63. P. Debye, Polar Molecules (The chemical catalog company, Haverhil, 1929)

    MATH  Google Scholar 

  64. E.P. Diamandis, T.K. Christopoulos, The biotin-(strept)avidin system: Principles and applications in biotechnology. Clin. Chem. 37(5), 625–636 (1991)

    Google Scholar 

  65. F. Öisjöen, J.F. Schneiderman, A.P. Astalan, A. Kalabukhov, C. Johansson, D. Winkler, A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. Biosens. Bioelectron. 25, 1008–1013 (2010)

    Article  Google Scholar 

  66. R.C. Weast, M.J. Astle, CRC Handbook of Chemistry and Physics, 59th edn. (CRC Press Inc., Boca Raton, 1978–1979)

    Google Scholar 

  67. T.C. Kwong, Free drug measurements: methodology and clinical significance. Clin. Chim. Acta 151, 193–216 (1986)

    Article  Google Scholar 

  68. M.B. Medina, L. Van Houten, P.H. Cooke, S.I. Tu, analysis of antibody binding interactions with immobilized E. coli O157:H7 cells using the BIA core. Biotechnol. Tech. 11(3), 173–176 (1997)

    Article  Google Scholar 

  69. S.S. Pathak, H.F.J. Savelkoul, Biosensors in immunology: the story so far. Immunol. Today 18(10), 464–467 (1997)

    Article  Google Scholar 

  70. F. Öisjöen, J.F. Schneiderman, A.P. Astalan, A. Kalabukhov, C. Johansson, D. Winkler, The need for stable, mono-dispersed, and biofunctional magnetic nanoparticles for one-step magnetic immunoassays. J. Phys. Conf. Ser. 200(122006), (2010b). doi: 10.1088/1742-6596/200/12/122006

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öisjöen, F. (2013). Magnetic Immunoassays. In: High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31356-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31356-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31355-4

  • Online ISBN: 978-3-642-31356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics