Skip to main content

High-\(T_\mathrm{c}\) SQUIDs

  • Chapter
  • First Online:
  • 580 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Superconductivity was discovered by Kamerlingh Onnes in 1911 after he succeeded in liquefying helium. Kamerlingh Onnes discovered that the electrical resistance of mercury vanished when it was cooled to below 4.2 K. The transition temperature of a superconductor is known as the critical temperature, \(T_c\), and is a material-specific property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.K. Onnes, The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, 12(120), (1911)

    Google Scholar 

  2. W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)

    Article  Google Scholar 

  3. L.N. Cooper, Bound electron pairs in a degenerate fermi gas. Phys. Rev. 104(4), 1189–1190 (1956)

    Article  MATH  Google Scholar 

  4. J.G. Bednorz, K.A. Müller, Possible high-\(T_c\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B 62(2), 189–193 (1996)

    Google Scholar 

  5. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987)

    Article  Google Scholar 

  6. M. Tinkham, Introduction to Superconductivity (Dover publications, Mineola, 1996)

    Google Scholar 

  7. T. van Duzer, C.W. Turner, Superconductive Devices and Electronics (Prentice Hall PTR, New Jersey, 1999)

    Google Scholar 

  8. J. Clarke, A.I. Braginski, The SQUID handbook, vol. 1,(WILEY-VCH, Weinheim, 2006a).

    Google Scholar 

  9. J. Clarke, A.I. Braginski, The SQUID handbook, vol. 2 (WILEY-VCH, Weinheim, 2006b)

    Book  Google Scholar 

  10. B.D. Josephson, Possible new effects in superconductive tunneling. Phys Lett. 1(7), 251–253 (1962)

    Article  MATH  Google Scholar 

  11. D.E. McCumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39(7), 3113–3118 (1968)

    Article  Google Scholar 

  12. W.C. Stewart, Current-voltage characteristics of josephson junctions. Appl. Phys Lett. 12(8), 277–280 (1968)

    Article  Google Scholar 

  13. D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, J. Clarke, High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys. 71(3), 631–686 (1999)

    Article  Google Scholar 

  14. K.K. Likharev, V.K. Semenov, Fluctuation spectrum in superconducting point junctions. JETP Lett. 15(10), 625–629 (1972)

    Google Scholar 

  15. A.N. Vystavkin, V.N. Gubanov, L.S. Kuzmin, K.K. Likharev, V.V. Migulin, V.K. Semenov, S-c-S junctions as nonlinear elements of microwave receiving devices. Phys. Rev. Appl. 9, 79 (1974)

    Article  Google Scholar 

  16. J. Clarke, W.M. Goubau, M.B. Ketchen, Tunnel junction dc SQUID: Fabrication, operation, and performance. J. Low Temp. Phys. 25, 99–144 (1976)

    Article  Google Scholar 

  17. V. Ambegaokar, B.I. Halperin, Voltage due to thermal noise in the dc josephson effect. Phys. Rev. Lett. 22, 1364–1366 (1969)

    Article  Google Scholar 

  18. J. Clarke, R.H. Koch, The impact of high-temperature superconductivity on SQUIDs. Science 242, 217–223 (1988)

    Article  Google Scholar 

  19. R.H. Koch, J. Clarke, W.M. Goubau, J.M. Martinis, C.M. Pegrum, D.J. Van Harlingen, Flicker (1/f) noise in tunnel junction DC Squids. J. Low Temp. Phys. 51(1–2), 207–224 (1983)

    Article  Google Scholar 

  20. J. Clarke, G. Hawkins, Flicker (1/f) noise in Josephson tunnel junctions. Phys. Rev. B 14(7), 2826–2831 (1976)

    Article  Google Scholar 

  21. C.T. Rogers, R.A. Buhrman, Composition of 1/f noise in metal-insulator-metal tunnel junctions. Phys. Rev. Lett. 53(13), 1272–1275 (1984)

    Article  Google Scholar 

  22. D. Drung, High-\(T_c\) and low-\(t_c\) dc SQUID electronics. Supercond. Sci. Technol. 16, 1320–1336 (2003)

    Article  Google Scholar 

  23. E. Dantsker, S. Tanaka, J. Clarke, High-\(T_c\) superconducting quantum interference devices with slots of holes: Low 1/f noise in ambient magnetic fields. Appl. Phys. Lett. 70(15), 2037–2039 (1997)

    Article  Google Scholar 

  24. C.D. Tesche, J. Clarke, dc SQUID: Noise and optimization. J. Low. Temp. Phys. 29(3–4), 301–331 (1977)

    Article  Google Scholar 

  25. K. Enpuku, G. Tokita, T. Maruo, Inductance dependence of noise properties of a high-\(T_c\) dc superconducting quantum interference device. J. Appl. Phys. 76(12), 8180–8185 (1994)

    Article  Google Scholar 

  26. K. Enpuku, Y. Shimomura, T. Kisu, Effect of thermal noise on the characteristics of a high \(T_c\) dc superconducting quantum interference device. J. Appl. Phys. 73(11), 7929–7934 (1993)

    Article  Google Scholar 

  27. L.P. Lee, J. Longo, V. Vinetskiy, R. Cantor, Low noise \(\text{ YBa}_2 \text{ Cu}_3 \text{ O}_{7-\delta }\) direct-current superconducting quantum interference device magnetometer with direct signal injection. Appl. Phys. Lett. 66(12), 1539–1541 (1995)

    Article  Google Scholar 

  28. P. Magnelind, High-\(T_c\) SQUIDs for magnetophysiology, Ph.D. thesis, Chalmers University of Technology, 2006.

    Google Scholar 

  29. P.A. Rosenthal, M.R. Beasley, K. Char, M.S. Colclough, G. Zaharchuk, Flux focusing effects in planar thin-film grain-boundary Josephson junctions. Appl. Phys. Lett. 59(26), 3482–3484 (1991)

    Article  Google Scholar 

  30. M.B. Ketchen, J.M. Jaycox, Ultra-low-noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl. Phys. Lett. 40(8), 736–738 (1982)

    Article  Google Scholar 

  31. M.M. Khapaev, A. Yu, Kidiyarova-Shevchenko, P. Magnelind, M.Y. Kupriyanov. 3D-MLSI: Software package for inductance calculation in multilayer superconducting integrated circuits. IEEE. Trans. Appl. Supercond. 11(1), 1090–1093 (2001)

    Article  Google Scholar 

  32. H. Hilgenkamp, J. Mannhart, Grain boundaries in high-\(T_c\) superconductors. Rev. Mod. Phys. 74, 485–549 (2002)

    Article  Google Scholar 

  33. R. Gross, L. Alff, A. Beck, O.M. Froehlich, D. Koelle, A. Marx, Physics and technology of high temperature superconducting josephson junctions. IEEE. Trans. Appl. Supercond. 7(2), 2929–2935 (1997)

    Article  Google Scholar 

  34. R.K. Singh, D. Kumar, Pulsed laser deposition and characterization of high-\(T_c\) \(\text{ YBa}_2 \text{ Cu}_3 \text{ O}_{7-\delta }\). Mater. Sci. Eng. 22, 113–185 (1997)

    Google Scholar 

  35. F. Öisjöen, P. Magnelind, A. Kalaboukhov, D. Winkler, High-\(T_c\) SQUID gradiometer system for immunoassays. Supercond. Sci. Technol. 2, 034004 (4pp) (2008)

    Google Scholar 

  36. V. Schultze, D. Drung, R. Ijsselsteijn, H-G. Meyer, A high-\(T_c\) SQUID gradiometer with integrated homogeneous field compensation. Supercond. Sci. Technol. 17, S165–S169 (2004)

    Article  Google Scholar 

  37. P. Seidel, L. Dörrer, K. Peiselt, F. Schmidl, F. Smidth, C. Steigmeier, Development and investigation of novel single-layer gradiometers using highly balanced gradiometric SQUIDs. Supercond. Sci. Technol. 15, 150–155 (2002)

    Article  Google Scholar 

  38. K. Barthel, D. Koelle, B. Chesca, A.I. Braginski, A. Marx, R. Gross, R. Kleiner, Transfer function and thermal noise of \(\text{ YBa}_2 \text{ Cu}_3 \text{ O}_{7-\delta }\) direct current superconducting quantum interference devices operated under large thermal fluctuations. Appl. Phys. Lett. 74(15), 2209–2211 (1999)

    Article  Google Scholar 

  39. K. Enpuku, M. Hotta, A. Nakahodo, High-\(T_c\) SQUID system for biological immunoassays. Physica C 357–360(1), 1462–1465 (2001b)

    Article  Google Scholar 

  40. F. Ludwig, E. Dantsker, R. Kleiner, D. Koelle, J. Clarke, S. Knappe, D. Drung, H. Koch, N. McN, Alford, T.W. Button. Integrated high-\(T_c\) multiloop magnetometer. Appl. Phys. Lett. 66(11), 1418–1412 (1995)

    Article  Google Scholar 

  41. R.H. Koch, J.Z. Sun, V. Foglietta, W.J. Gallagher, Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field. Appl. Phys. Lett. 67, 709–711 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öisjöen, F. (2013). High-\(T_\mathrm{c}\) SQUIDs. In: High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31356-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31356-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31355-4

  • Online ISBN: 978-3-642-31356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics