Skip to main content

Feasibility for Intramedullary Spinal Glioma

  • Chapter
  • First Online:
Neutron Capture Therapy

Abstract

Spinal cord tumors are lesions that occur within or adjacent to the spinal cord. They are considered to be intra-axial in location and can be either primary or metastatic. Spinal cord tumors are relatively rare and account for 2 % of all central nervous system tumors. Tumors arising within the spinal cord itself are called intramedullary tumors, one-third of which are located in the intramedullary compartment. The spinal cord has the characteristic of integrated neuronal axons existing within a small diameter. Since spinal cord pathways are interrupted, neurologic dysfunction may be produced distally. Major complaints of the patients are unremitting pain, sensory dysesthesia, and muscular weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim MS et al (2001) Intramedullary spinal cord astrocytoma in adults: postoperative outcome. J Neurooncol 52(1):85–94

    Article  PubMed  CAS  Google Scholar 

  2. Reimer R, Onofrio BM (1985) Astrocytomas of the spinal cord in children and adolescents. J Neurosurg 63(5):669–675

    Article  PubMed  CAS  Google Scholar 

  3. McGuire CS, Sainani KL, Fisher PG (2009) Both location and age predict survival in ependymoma: a SEER study. Pediatr Blood Cancer 52(1):65–69

    Article  PubMed  Google Scholar 

  4. McGirt MJ et al (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63(1):55–60; discussion 60–61

    Article  PubMed  Google Scholar 

  5. Sgouros S, Malluci CL, Jackowski A (1996) Spinal ependymomas–the value of postoperative radiotherapy for residual disease control. Br J Neurosurg 10(6):559–566

    Article  PubMed  CAS  Google Scholar 

  6. Whitaker SJ et al (1991) Postoperative radiotherapy in the management of spinal cord ependymoma. J Neurosurg 74(5):720–728

    Article  PubMed  CAS  Google Scholar 

  7. Shaw EG et al (1986) Radiotherapeutic management of adult intraspinal ependymomas. Int J Radiat Oncol Biol Phys 12(3):323–327

    Article  PubMed  CAS  Google Scholar 

  8. Marcus RB Jr, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 19(1):3–8

    Article  PubMed  Google Scholar 

  9. McCunniff AJ, Liang MJ (1989) Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 16(3):675–678

    Article  PubMed  CAS  Google Scholar 

  10. Jeremic B, Djuric L, Mijatovic L (1991) Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater. Cancer 68(10):2138–2141

    Article  PubMed  CAS  Google Scholar 

  11. Fowler JF et al (2000) Clinical radiation doses for spinal cord: the 1998 international questionnaire. Radiother Oncol 55(3):295–300

    Article  PubMed  CAS  Google Scholar 

  12. Emami B et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    Article  PubMed  CAS  Google Scholar 

  13. Nelson JW et al (2008) Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int J Radiat Oncol Biol Phys 73(5):1369–1375

    Article  PubMed  Google Scholar 

  14. Gerszten PC, Welch WC (2004) Cyberknife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 15(4):491–501

    Article  PubMed  Google Scholar 

  15. Kumada H et al (2004) Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy. Phys Med Biol 49(15):3353–3365

    Article  PubMed  CAS  Google Scholar 

  16. Kumada H et al (2004) Improvement of dose calculation accuracy for BNCT dosimetry by the multi-voxel method in JCDS. Appl Radiat Isot 61(5):1045–1050

    Article  PubMed  CAS  Google Scholar 

  17. Coderre JA et al (1995) Comparative assessment of single-dose and fractionated boron neutron capture therapy. Radiat Res 144(3):310–317

    Article  PubMed  CAS  Google Scholar 

  18. Morris GM et al (2002) Long-term infusions of p-boronophenylalanine for boron neutron capture therapy: evaluation using rat brain tumor and spinal cord models. Radiat Res 158(6):743–752

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakai, K., Matsumura, A. (2012). Feasibility for Intramedullary Spinal Glioma. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics