The 2010 Muddy-Debris Flow of Angangueo (Mexico): Modelling and Simulation

  • Jean-François ParrotEmail author
  • Veronica Ochoa-Tejeda


In tropical mountainous regions, heavy rainfalls often induce landslides and mudflows. Mexico is continually subjected to natural hazards. In February 2010 the town of Angangueo in the state of Michoacan was devastated by a huge muddy debris flow. Use of morphological and climatic parameters of the affected areas can be incorporated into a model that simulates the extension of this natural disaster. It appears that zones whose slope aspect is against the flow direction represent the most vulnerable zones. The model described herein can easily and rapidly be applied to any other tropical region to reliably prevent such catastrophic phenomena. Because in many areas the colluvial slope deposits register multiple cracks and active scars, an assessment of the risk related to slope movements in Mexico is essential.


Mudflow Modeling and simulation Angangueo Michoacán state (Mexico) 


  1. Arattano M (2003) Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors. In: Rickenmann D, Wieczorek GF (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Proceedings of the 3rd international conference, Davos, Switzerland, 10–12 Sept 2003. Mill Press, RotterdamGoogle Scholar
  2. Berti M, Simoni A (2005) Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides 2(3):171–182CrossRefGoogle Scholar
  3. Chiarle M, Luino F (1998) Colate detritiche torrentizie innescate dal nubifragio dell’8 luglio 1996 sul M. Mottarone (VB-Piemonte). Convegno Internazionale: “La prevenzione delle catastrofi idrogeologiche: il contributo della ricerca scientifica”, Alba, CN, 5–7 novembre 1996. vol II, pp 231–245Google Scholar
  4. Coe JA, Cannon SH, Santi PM (2008) Introduction to the special issue on debris flows initiated by runoff, erosion, and sediment entrainment in western North America. Geomorphology 96:247–249CrossRefGoogle Scholar
  5. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87CrossRefGoogle Scholar
  6. Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Landslide recognition: identification, movement and causes. Wiley, Chichester/Royaume Uni, 274pGoogle Scholar
  7. Fanti R, Gigli G, Morelli S, Arreygue Rocha E (2010) The catastrophic debris-flow of Minatitlan (Colima, Mexico): description and modeling. In: Proceedings of mountain risks: bringing science to society, Firenze, 24–26 Nov 2010, pp 243–248Google Scholar
  8. Glade T, Crozier MJ (2005) The nature of landslide hazard and impact. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, London, pp 43–74CrossRefGoogle Scholar
  9. Gregoretti C, Dalla Fontana G (2008) The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrol Process 22:2248–2263CrossRefGoogle Scholar
  10. Griffiths PG, Webb RH, Melis TS (2004) Frequency and initiation of debris flows in Grand Canyon, Arizona. J Geophys Res 109(F04002):1–14Google Scholar
  11. Guzzeti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  12. Julien PY, Paris A (2010) Flow velocities for mudflows and debris flows. J Hydraul Eng 136(9):676–679CrossRefGoogle Scholar
  13. Lang A, Moya J, Coromina S, Schrott L, Dikau R (1999) Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30:33–52CrossRefGoogle Scholar
  14. Mei CC, Liu KF, Yuhi M (2001) Mud flow – slow and fast. In: Provencale A, Balmforth N (eds) Geomorphological fluid mechanics, vol 582, Lecture notes in physics. Springer, Berlin/New York, pp 548–577CrossRefGoogle Scholar
  15. Ochoa-Tejeda V, Fort M (2011) Relation entre la pluviométrie et le déclenchement des glissements de terrain dans La Soledad, Sierra Norte de Puebla, Mexique. Bull Assoc Géogr Fr 1:27–34Google Scholar
  16. Parrot J-F, Ochoa-Tejeda V (2005) Generación de Modelos Digitales de Terreno Raster. Método de digitalizacion. Geografía para el Siglo XXI, UNAM, 31pGoogle Scholar
  17. Parrot J-F, Ochoa-Tejeda V (2009) Auto-related fractal analysis of triggering factors and landslide assessment. An example from the Sierra Norte de Puebla, Mexico. In: 6th annual meeting AOGS, Singapore, 11–15 Aug 2009Google Scholar
  18. Tognacca C, Bezzola GR, Minor HE (2000) Threshold criterion for debris-flow initiation due to channel-bed failure. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. A. A. Balkema, Rotterdam, pp 89–97Google Scholar
  19. Van Asch TWJ, Malet JP, Van Beek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Géol Fr 178(2):65–88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LAGE, Instituto de Geografia, UNAMMexico CityMexico
  2. 2.Université Paris Diderot, UMR PRODIG 8586 – CNRSParisFrance

Personalised recommendations