Advertisement

Mass Movement Classification Using Morphometric Parameters (Puebla, Mexico)

  • Veronica Ochoa-TejedaEmail author
  • Parrot Jean-François
  • Fort Monique
Chapter

Abstract

The Sierra Norte de Puebla (Mexico) is a tropical mountain frequently affected by torrential rains induced by depressions and hurricanes. In October 1999 and 2005, intense precipitation triggered hundreds of landslides and caused heavy human losses and material damages. All the landslides surveyed in the field and their traces extracted from the satellite images have been analyzed by using morphometric parameters in order to characterize and to classify them. The spatial distribution of observed landslides types is not random but responds to both regional structural features and material nature involved in the movement. It is particularly important to establish these close relationships in order to assess landslide hazards by using different factors and methods and the approach proposed in this paper seems to be very useful to do that.

Keywords

Morphometric parameters Landslide classification Sierra Norte de Puebla (Mexico) 

References

  1. Akl SG, Toussaint G (1978) Efficient convex hull algorithms for pattern recognition applications. In: Proceedings of the 4th international joint conference on pattern recognition, Kyoto, pp 483–487Google Scholar
  2. Alva-Valdivia LM, Goguitchaichvili A, Urrutia-Fucugauchi J, Ferrari L, Rosas-Elguera J, Zamorano-Orozco JJ (2000) Paleomagnetic data from the Trans-Mexican volcanic belt: implications for tectonics and volcanic stratigraphy. Earth Planets Space 52(7):467–478Google Scholar
  3. Angeles-Moreno E, Sánchez-Martínez S (2002) Geología, geoquímica y geología estructural de las rocas del basamiento del macizo de Teziutlan, estado de Puebla. Professional thesis, Facultad de Ingenieria, UNAM, México, 105 pGoogle Scholar
  4. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Academic, Dordrecht, 360pCrossRefGoogle Scholar
  5. Collinson AJC, Anderson MG, Lloyd DM (1995) Impact of vegetation on slope stability in a humid tropical environment: a modeling approach. In: Proceedings of the Institute Civil Engineers, Water Maritime and Energy, vol 112. 168–175Google Scholar
  6. Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, vol 247, Special report: transportation research board., pp 36–75Google Scholar
  7. Fannin RJ, Wise MP, Wilkinson JMT, Rollerson TP (1996) Landslide initiation and runout on clearcut hillslopes. In: Proceedings of the 7th international symposium on landslides, Trondheim, pp 195–199Google Scholar
  8. García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124:250–259CrossRefGoogle Scholar
  9. Glade T, Anderson M, Crozier MJ (eds) (2005) Landslide hazard and risk. Wiley, Chichester, 803pGoogle Scholar
  10. Guinau M, Vilajosana I, Vilaplana JM (2007) GIS-based debris flow source and runout susceptibility assessment from DEM data – a case study in NW Nicaragua. Nat Hazards Earth Syst Sci 7:703–716CrossRefGoogle Scholar
  11. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372CrossRefGoogle Scholar
  12. Hutchinson JN (1988) General report morphological and geotechnical parameters of landslides in relation to geology and hydrology. In: Bornnard C (ed) Proceedings of the fifth international symposium on landslides, vol 1. A. A. Balkema, Rotterdam, pp 3–35Google Scholar
  13. INEGI (1994) Carta Geologica de Poza Rica. Esc: 1:250,000. MexicoGoogle Scholar
  14. Jadda M, Shafri HZM, Mansor SB, Sharifikia M, Pirasteh S (2009) Landslide susceptibility evaluation and factor effect. Analysis using probabilistic-frequency ratio model. Eur J Sci Res 33(4):654–668Google Scholar
  15. Mooser F (2000) Mapa geológico de Laguna Verde. Comision Federal de Electricidad, MexicoGoogle Scholar
  16. Nichol J, Shaker A, Wong M-S (2006) Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology 76:68–75CrossRefGoogle Scholar
  17. Ochoa-Tejeda V (2004) Propuesta metodologica para el estudio de inestabilidad a partir de los MDT y la Percepción Remota. Master’s thesis, UNAM, 213pGoogle Scholar
  18. Ochoa-Tejeda V (2009) Control estructural de la inestabilidad de laderas: Modelación tridimensional de los rasgos geológicos. Aplicación al estudio de los procesos de remoción en masa de La Soledad, Sierra Norte de Puebla, México (2009). Ph.D. thesis, Earth Sciences, Geophysical Institute, UNAM, 217pGoogle Scholar
  19. Ochoa-Tejeda V (2010) Etude des facteurs favorables au déclenchement des glissements de terrain dans les formations superficielles et les affleurements rocheux de la Sierra Norte de Puebla (Mexique). Ph.D. thesis, Université Paris 7 Denis Diderot, Paris, France. 215pGoogle Scholar
  20. Ochoa-Tejeda V, Fort M (2011) Relation entre la pluviométrie et le déclenchement des glissements de terrain dans La Soledad, Sierra Norte de Puebla, Mexique. Bull de l’Assoc des Géographes Français 1:27–34Google Scholar
  21. Ochoa-Tejeda V, Parrot J-F (2007) Extracción automatizada de trazas de los deslizamientos utilizando un modelo digital de terreno e imágenes de satélite de alta resolución. Ejemplo de aplicación: La Soledad, Sierra Norte, Puebla, México. Revista Mexicana de Ciencias Geológicas 24(3):354–367Google Scholar
  22. Parrot J-F (2007) Tri-dimensional parameterization: an automated treatment to study the evolution of volcanic cones. Géomorphologie 3:37–47Google Scholar
  23. Parrot J-F, Ochoa-Tejeda V (2005) Generación de Modelos Digitales de Terreno Raster. Método de digitalizacion. Geografía para el Siglo XXI, UNAM, 31pGoogle Scholar
  24. Parrot J-F, Ochoa-Tejeda V (2009) Auto-related fractal analysis of triggering factors and landslide assessment. An example from the Sierra Norte de Puebla, Mexico. In: 6th annual meeting AOGS. Singapore, 11–15 Aug 2009Google Scholar
  25. Pratt WK (1978) Digital image processing. Wiley, New York, 750pGoogle Scholar
  26. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. IAEG commission on landslides and other mass-movements. UNESCO Press, Paris, 63pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Veronica Ochoa-Tejeda
    • 1
    Email author
  • Parrot Jean-François
    • 2
  • Fort Monique
    • 1
  1. 1.Université Paris Diderot, Sorbonne-Paris-Cité, UMR PRODIG 8586 – CNRSParis cedex 13France
  2. 2.LAGE, Instituto de Geografía, UNAMMexico CityMexico

Personalised recommendations