Advertisement

Analysis and Uncertainty Quantification of Dynamic Run-Out Model Parameters for Landslides

  • B. Quan LunaEmail author
  • J. Cepeda
  • A. Stumpf
  • C. J. van Westen
  • A. Remaître
  • J.-P. Malet
  • T. W. J. van Asch
Chapter

Abstract

The main goals of landslide run-out modeling should be the assessment of future landslide activity with a range of potential scenarios, and the information of the local populations about the hazards in order to enable informed response measures. In recent times, numerical dynamic run-out models have been developed which can assess the velocity and extent of motion of rapid landslides such as debris flows and avalanches, flow slides and rock avalanches. These models are physically-based and solved numerically, simulating the movement of the flow using constitutive laws of fluid mechanics in one or two dimensions. Resistance parameters and release volumes are crucial for a realistic simulation of the landslide behavior, whereas it is generally difficult to measure them directly in the field. Uncertainties in the parameterization of these models yield many uncertainties concerning their frequency values, which must be addressed in a proper risk assessment. Based on the probability density functions of release volumes and friction coefficients of a given landslide model, this work aims to systematically quantify the uncertainties in the run-out modeling. The obtained distributions can be used as an input for a probabilistic methodology where the uncertainties in the release volume and friction coefficients (rheological parameters) inside the dynamic models can be addressed. This will improve the confidence of the dynamic run-out model outputs such as the distribution of deposits in the run-out area, velocities and impact pressures, important components for a risk analysis and regulatory zoning.

Keywords

Run-out Uncertainty Landslides 

References

  1. Antiano JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphology 104(3-4):117–133CrossRefGoogle Scholar
  2. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond Ser A 255:49–63Google Scholar
  3. Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10(3):447–458CrossRefGoogle Scholar
  4. Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14CrossRefGoogle Scholar
  5. Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195(3–4):169–183CrossRefGoogle Scholar
  6. Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3):231–234CrossRefGoogle Scholar
  7. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992CrossRefGoogle Scholar
  8. Hürlimann M, Medina V, Bateman A, Copons R, Altimir J (2007) Comparison of different techniques to analyse the mobility of debris flows during hazard assessment-Case study in La Comella catchment, Andorra. In: Chen C-I, Majors JJ (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment. Millpress, Netherlands, pp 411–422Google Scholar
  9. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J Geophys Res 106:537–552CrossRefGoogle Scholar
  10. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711CrossRefGoogle Scholar
  11. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448CrossRefGoogle Scholar
  12. McKinnon M, Hungr O, McDougall S (2008) Dynamic analyses of Canadian landslides. In: Locat J, Perret D, Turmel D, Demers D and Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management, Presse de l’Université Laval, Québec, 594pGoogle Scholar
  13. Pitman BE, Le L (2005) A two-fluid model for avalanche and debris flow. Phil Trans R Soc A 363:1573–1601CrossRefGoogle Scholar
  14. Pudasaini SP, Hutter K (2007) Avalanche dynamics – dynamics of rapid flows of dense granular avalanches. Springer, BerlinGoogle Scholar
  15. Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania Region, Italy. Environ Geol 45:295–311CrossRefGoogle Scholar
  16. Stark CP, Guzzetti F (2009) Landslide rupture and the probability distribution of mobilized debris volumes. J Geophys Res 114(F00A02), doi: 10.1029/2008JF001008
  17. van Asch TWJ, Malet J-P, van Beek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Géol Fr 178(2):65–88Google Scholar
  18. Voellmy A (1955) Uber die Zerstorunskraft von Lawinen (On breaking force of avalanches). Schweizerische Bauzeitung 73:212–285Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Quan Luna
    • 1
    Email author
  • J. Cepeda
    • 2
  • A. Stumpf
    • 3
  • C. J. van Westen
    • 1
  • A. Remaître
    • 3
  • J.-P. Malet
    • 3
  • T. W. J. van Asch
    • 4
  1. 1.United Nations University – School for Disaster Geo-information Management ITCUniversity of TwenteEnschedeThe Netherlands
  2. 2.Norwegian Geotechnical Institute (NGI)OsloNorway
  3. 3.School and Observatory of Earth Sciences CNRSUniversity of StrasbourgStrasbourgFrance
  4. 4.Faculty of GeosciencesUtrecht UniversityUtrechtthe Netherlands

Personalised recommendations