Skip to main content

Analysis and Uncertainty Quantification of Dynamic Run-Out Model Parameters for Landslides

  • Chapter
  • First Online:

Abstract

The main goals of landslide run-out modeling should be the assessment of future landslide activity with a range of potential scenarios, and the information of the local populations about the hazards in order to enable informed response measures. In recent times, numerical dynamic run-out models have been developed which can assess the velocity and extent of motion of rapid landslides such as debris flows and avalanches, flow slides and rock avalanches. These models are physically-based and solved numerically, simulating the movement of the flow using constitutive laws of fluid mechanics in one or two dimensions. Resistance parameters and release volumes are crucial for a realistic simulation of the landslide behavior, whereas it is generally difficult to measure them directly in the field. Uncertainties in the parameterization of these models yield many uncertainties concerning their frequency values, which must be addressed in a proper risk assessment. Based on the probability density functions of release volumes and friction coefficients of a given landslide model, this work aims to systematically quantify the uncertainties in the run-out modeling. The obtained distributions can be used as an input for a probabilistic methodology where the uncertainties in the release volume and friction coefficients (rheological parameters) inside the dynamic models can be addressed. This will improve the confidence of the dynamic run-out model outputs such as the distribution of deposits in the run-out area, velocities and impact pressures, important components for a risk analysis and regulatory zoning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antiano JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphology 104(3-4):117–133

    Article  Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond Ser A 255:49–63

    Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10(3):447–458

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Article  Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195(3–4):169–183

    Article  Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3):231–234

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992

    Article  Google Scholar 

  • Hürlimann M, Medina V, Bateman A, Copons R, Altimir J (2007) Comparison of different techniques to analyse the mobility of debris flows during hazard assessment-Case study in La Comella catchment, Andorra. In: Chen C-I, Majors JJ (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment. Millpress, Netherlands, pp 411–422

    Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J Geophys Res 106:537–552

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711

    Article  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448

    Article  Google Scholar 

  • McKinnon M, Hungr O, McDougall S (2008) Dynamic analyses of Canadian landslides. In: Locat J, Perret D, Turmel D, Demers D and Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management, Presse de l’Université Laval, Québec, 594p

    Google Scholar 

  • Pitman BE, Le L (2005) A two-fluid model for avalanche and debris flow. Phil Trans R Soc A 363:1573–1601

    Article  Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics – dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  • Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania Region, Italy. Environ Geol 45:295–311

    Article  Google Scholar 

  • Stark CP, Guzzetti F (2009) Landslide rupture and the probability distribution of mobilized debris volumes. J Geophys Res 114(F00A02), doi:10.1029/2008JF001008

  • van Asch TWJ, Malet J-P, van Beek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Géol Fr 178(2):65–88

    Google Scholar 

  • Voellmy A (1955) Uber die Zerstorunskraft von Lawinen (On breaking force of avalanches). Schweizerische Bauzeitung 73:212–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Quan Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luna, B.Q. et al. (2013). Analysis and Uncertainty Quantification of Dynamic Run-Out Model Parameters for Landslides. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_42

Download citation

Publish with us

Policies and ethics