Runout Prediction of Rock Avalanches in Volcanic and Glacial Terrains

  • Rosanna SosioEmail author
  • Giovanni B. Crosta
  • Johanna H. Chen
  • Oldrich Hungr


Among all kinds of landslides, rock avalanches are characterized by exceptional mobility and destructiveness. Their mobility is well larger than explained by the real material properties and it is usually expressed by means of an “apparent” friction angle which is a-priori unpredictable. We replicate the motion of historical rock/debris avalanches evolved in glacial and volcanic environments. The modelled events involved variable volumes (ranging from millions of m3 to km3) which are well preserved so that their main features are recognizable from satellite images. Within each class of events, and irrespective of the variety of conditions in which they occurred, the best fitting parameters span in a narrow interval. The bulk basal friction angle ranges within 3° and 7.5° for volcanic debris avalanches, within 6° and 12° for ice-rock avalanches. These values are significantly lower than other rock avalanches which require values as high as 11° to 31°. The consistency of the back-analyzed parameters is encouraging for a possible use of the model in the perspective of hazard mapping while set of calibrated values can help the selection of model input parameter values for prediction and for definition of uncertainty on zonation.


Rock avalanche Numerical modelling Forward prediction Rheological parameters 


  1. Aguila LG, Newhall CG, Miller CD, Listanco EL (1986) Reconnaissance geology of a large debris avalanche from Iriga volcano, Philippines. Philippine J Volcanol 3:54–72Google Scholar
  2. Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160CrossRefGoogle Scholar
  3. Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146CrossRefGoogle Scholar
  4. Delaney KB, Evans SG (2008) Application of digital cartographic techniques in the characterization and analysis of catastrophic landslides; The 1997 Mount Munday rock avalanche, British Columbia. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, pp 141–146Google Scholar
  5. Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. Proc V Int Symp Landslides 2:1153–1158Google Scholar
  6. Glicken H (1996) Rockslide-debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. U S Geol Surv Open-File Report, 96–677Google Scholar
  7. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geoph Res 97:9063–9071CrossRefGoogle Scholar
  8. Hewitt K (1999) Quaternary Moraines vs Catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Res 51(3):220–237CrossRefGoogle Scholar
  9. Huggel C, Caplan-Auerbach J, Waythomas CF, Wessels RL (2007) Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: a case study of frequent large avalanches on Iliamna Volcano, Alaska. J Volc Geoth Res 168(1–4):114–136CrossRefGoogle Scholar
  10. Huggel C, Schneider D, Julio Miranda P, Delgado Granados H, Kääb A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatepetl Volcano, Mexico. J Volc Geoth Res 170:99–110CrossRefGoogle Scholar
  11. Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset (ed) Proceedings, 7th international symposium on landslides, Trondheim, 1, pp 233–238Google Scholar
  12. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160CrossRefGoogle Scholar
  13. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202.1–12202CrossRefGoogle Scholar
  14. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. Ph.D. thesis, University of British Columbia, VancouverGoogle Scholar
  15. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  16. Ponomareva VV, Pevzner MM, Melekestsev IV (1998) Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 59(7):490–505CrossRefGoogle Scholar
  17. Post A (1967) Effects of the March 1964 Alaska earthquake on glaciers, vol 554-D, U. S. Geological Survey Professional Paper. U.S. Govt. Print. Off, Washington, DC, p 42Google Scholar
  18. Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwestern Argentina: construction by Pleistocene volcanism and destruction by edifice collapse. J Volcanol Geotherm Res 105:77–105CrossRefGoogle Scholar
  19. Shreve RL (1966) Sherman landslide, Alaska. Science 154(3757):1639–1643CrossRefGoogle Scholar
  20. Siebert L (2002) Landslides resulting from structural failure of volcanoes. In: Evans SG, De Graff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, vol 15, Geological society of America, reviews in engineering geology. Geological Society of America, Boulder, CO, pp 209–235CrossRefGoogle Scholar
  21. Vallance JW, Siebert L, Rose WI, Girón J, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66:337–355CrossRefGoogle Scholar
  22. van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  23. Voight B, Elsworth D (1997) Failure of volcano slopes. Géotechnique 47(1):1–31CrossRefGoogle Scholar
  24. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:224–273Google Scholar
  25. Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volc Geoth Res 66:309–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rosanna Sosio
    • 1
    Email author
  • Giovanni B. Crosta
    • 1
  • Johanna H. Chen
    • 2
  • Oldrich Hungr
    • 3
  1. 1.Department of Scienze Geologiche e GeotecnologieUniversity of Milano BicoccaMilanItaly
  2. 2.Klohn Crippen BergerCalgaryCanada
  3. 3.Department of Earth and Ocean SciencesThe University of British ColumbiaVancouverCanada

Personalised recommendations