Advertisement

On Controls of Flow-Like Landslide Evolution by an Erodible Layer

  • Giovanni B. CrostaEmail author
  • Silvia Imposimato
  • Dennis Roddeman
  • Paolo Frattini
Chapter

Abstract

The role played by the presence of erodible material along the path of flow-like landslides is analyzed. The effects of type and physical mechanical properties of materials, thickness and slope geometry on the runout and the deposit geometry are investigated. Fully 2D and 3D numerical simulations have been performed representing small scale laboratory experiments and large scale field examples. The properties adopted for the erodible material strongly control the evolution of the landslide and the type of occurring mechanisms. These aspects have a major influence on the results and on the hazard zonation and should be taken into account.

Keywords

Rock avalanches Erosion Entrapment Modeling FEM 3D Granular flow 

Notes

Acknowledgments

This study has been partially funded by the EC Safeland Project, GA No.: 226479, Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies.

References

  1. Balmforth NJ, Kerswell RR (2005) Granular collapse in two dimensions. J Fluid Mech 538:399CrossRefGoogle Scholar
  2. Chen H, Crosta GB, Lee CF (2006) Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique 56(5):305–322CrossRefGoogle Scholar
  3. Choffat P (1929) L’ecroulement d’Arvel (Villeneuve) de 1922. Bull Soc Vaudoise Sci Nat 57(1):5–28Google Scholar
  4. Crosta G (1992) An example of unusual complex landslide: from a rockfall to a dry granula flow. Geol Romana 30:175–184Google Scholar
  5. Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3(6):523–538CrossRefGoogle Scholar
  6. Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 60(1–2):127–146CrossRefGoogle Scholar
  7. Crosta GB, Imposimato S, Roddeman D, Chiesa S, Moia F (2005) Small fast moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng Geol 79(3–4):185–214CrossRefGoogle Scholar
  8. Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns R (eds) NATO ARW, landslides from massive rock slope failure, vol 49, NATO science series, earth and environmental sciences. Springer, Dordrecht, pp 211–232CrossRefGoogle Scholar
  9. Crosta GB, Imposimato S, Roddeman DG (2008a) Approach to numerical modelling of long runout landslides. In: Proceeding International forum on landslide disaster management, landslide runout analysis benchmarking exercise, GCO, Hong Kong, Dec 2007, 20pGoogle Scholar
  10. Crosta GB, Imposimato S, Roddeman DG (2008b) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145Google Scholar
  11. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J Geophys Res 114:F03020CrossRefGoogle Scholar
  12. Dufresne A, Davies TR, McSaveney MJ (2010) Influence of runout-path material on emplacement of the round top rock avalanche New Zealand. Earth Surf Proc Land 35:190–201Google Scholar
  13. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches; an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252CrossRefGoogle Scholar
  14. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121CrossRefGoogle Scholar
  15. Jaboyedoff M (2003) The rockslide of Arvel caused by human activity (Villeneuve, Switzerland): Summary, partial reinterpretation and comments of the work of Choffat, Ph. (1929): L’écroulement d’Arvel (Villeneuve) de 1922. Bull. SVSN 57, 5–28. Quanterra OPEN-FILE REPORT3Google Scholar
  16. Lajeunesse E, Monnier JB, Homsy GM (2005) Granular slumping on a horizontal surface. Phys Fluids 17:103302CrossRefGoogle Scholar
  17. Lube G, Huppert H, Sparks S, Hallworth M (2004) Axisymmetric collapse of granular columns. J Fluid Mech 508:175–199CrossRefGoogle Scholar
  18. Lube G, Huppert H, Sparks S, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72:041301CrossRefGoogle Scholar
  19. Lube G, Huppert H, Sparks S, Freundt A (2007) Static and flowing regions in granular collapses down channels. Phys Fluids 19:043301CrossRefGoogle Scholar
  20. Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res – Earth Surface 115:F03040CrossRefGoogle Scholar
  21. Mangeney-Castelnau A, Tsimring LS, Volfson D, Aranson IS, Bouchut B (2007) Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys Res Lett 34:L22401CrossRefGoogle Scholar
  22. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. Ph.D. thesis, The University of British Columbia, 253pGoogle Scholar
  23. Pitman EB, Nichita CC, Patra AK, Bauer AC, Bursik M, Webb A (2003) A numerical study of granular flows on erodible surfaces. Discrete Contin Dyn Syst Ser B 3:589–599CrossRefGoogle Scholar
  24. Roddeman DG (2008) TOCHNOG user’s manual. FEAT, 255p, www.feat.nl/manuals/user/user.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giovanni B. Crosta
    • 1
    Email author
  • Silvia Imposimato
    • 2
  • Dennis Roddeman
    • 2
  • Paolo Frattini
    • 1
  1. 1.Dipartimento di Scienze Geologiche e GeotecnologieUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.FEATHeerlenThe Netherlands

Personalised recommendations