Skip to main content

DEM and FEM/DEM Modelling of Granular Flows to Investigate Large Debris Avalanche Propagation

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Large debris avalanches are characterized by extremely rapid, flow-like motion of large masses and they travel extremely long distances showing much greater mobility than could be predicted using frictional models. In order to investigate the mechanisms involved and the reasons for the large propagation of these phenomena a discrete element model (DEM) and a combined finite and discrete element one (FEM/DEM) are used to simulate small-scale laboratory experiments carried out by Manzella “Manzella and Labiouse (Rock Mech Rock Eng 41(1):133–151, 2008, Eng Geol 109(1–2):146–158, 2009, Landslides, 2011 submitted); Manzella (Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale. Ph.D. n 4032, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH, 2008)”. The combined use of different models produces a more complete study of the phenomena since each model can fill certain gaps of the other; they also help in a better understanding of some mechanisms and factors, which are important in the longitudinal propagation of granular and block flows, such as the progressive failure, the initial block packing and the topographical characteristics of the slope break.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagnold RA (1954) Experiments on a gravity free dispersion of large solid spheres in Newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225:49–63

    Article  Google Scholar 

  • Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech Felsmechanik Mécanique des Roches 15(1):9–24

    Article  Google Scholar 

  • Drake TG (1990) Structural features in granular flows. J Geophys Res 95(B6):8681–8696

    Article  Google Scholar 

  • Drake TG (1991) Granular flow – physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes – the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87

    Article  Google Scholar 

  • Einstein HH, Sousa RL, Karam K, Manzella I, Kveldsvik V (2010) Rock slopes from mechanics to decision making. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Rock mechanics in civil and environmental engineering. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Evans SG, Roberts NJ, Ischuk A, Delaney KB, Morozova GS, Tutubalina O (2009) Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng Geol 109(3–4):195–212. doi:10.1016/j.enggeo.2009.08.007

    Article  Google Scholar 

  • Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci 95:911–919. doi:10.1007/s00531-006-0067-9

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und menschenleben. Frets und Wasmuth, Zurich, 218p

    Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams generated by rockfalls. Geol Soc Am Bull 86(1):129–140

    Article  Google Scholar 

  • Hungr O (2009) Numerical modelling of the motion of rapid, flow-like landslides for hazard assessment. KSCE J Civil Eng 13(4):281–287

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Kelfoun K, Druitt T, van Wyk de Vries B, Guilbaud M-N (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi:10.1007/s00445-008-0201-6

    Article  Google Scholar 

  • Mahabadi OK, Grasselli G, Munjiza A (2010a) Y-GUI: a graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity. Comput Geosci 36(2):241–252. doi:10.1016/j.cageo.2009.05.010

    Article  Google Scholar 

  • Mahabadi OK, Lisjak A, Grasselli G, Lukas T, Munjiza A (2010b) Numerical modelling of a triaxial test of homogeneous rocks using the combined finite-discrete element method. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Rock mechanics in civil and environmental engineering. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Manzella I (2008) Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale. Ph.D n°4032, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH

    Google Scholar 

  • Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41(1):133–151

    Article  Google Scholar 

  • Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158. doi:10.1016/j.enggeo.2008.11.006

    Article  Google Scholar 

  • Manzella I, Labiouse V (2011) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides (submitted)

    Google Scholar 

  • Manzella I, Pirulli M, Naaim M, Serratrice JF, Labiouse V (2008) Numerical modelling of a rock avalanche laboratory experiment in the framework of the “Rockslidetec” alpine project. In: Proceedings of the symposium on landslides and engineered slopes: from the past to the future, vol 1. Xi’an, China. CRC Press/Taylor & Francis, Boca Rato, pp 835–841

    Google Scholar 

  • Manzella I, Lisjak A, Mahabadi OK, Grasselli G (2011) Influence of initial block packing on rock avalanche flow and emplacement mechanisms through FEM/DEM simulations. Paper presented at the 2011 PanAm-CGS geotechnical conference, Toronto, 2–6 Oct 2011

    Google Scholar 

  • Munjiza A (2004) The combined finite-discrete element method. Wiley. doi:10.1002/0470020180.333p

  • Munjiza A, Andrews KRF (2000) Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. Int J Numer Methods Eng 49(11):1377–1396

    Article  Google Scholar 

  • Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174

    Article  Google Scholar 

  • Naaim M, Vial S, Couture R (1997) Saint Venant approach for rock avalanches modelling. In: Multiple scale analyses and coupled physical systems: Saint Venant symposium. Presses de l’École Nationale des Ponts et chaussées, Paris

    Google Scholar 

  • Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41(1):59–84. doi:10.1007/s00603-007-0143-x

    Article  Google Scholar 

  • Schindler C, Cuenod Y, Eisenlohr T, Joris CL (1993) The events of Randa, April 18th and May 19th 1991 – an uncommon type of rockfall. Die Ereignisse vom 18. April und 9. Mai 1991 bei Randa (VS) – ein atypischer Bergsturz in Raten Eclogae Geologicae Helvetiae 86(3):643–665

    Google Scholar 

  • Van Gassen W, Cruden DM (1989) Momentum transfer and friction in the debris of rock avalanches. Can Geotech J 26(4):623–628. doi:10.1139/t89-075

    Article  Google Scholar 

  • Williams JR, O’connor R (1995) A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries. Eng Comput 12(2):185–201

    Article  Google Scholar 

  • Williams JR, O’Connor R (1999) Discrete element simulation and the contact problem. Arch Comput Methods Eng 6(4):279–304

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Manzella would like to thank “Fondation Ernst and Lucie Schmidheiny” for funding and Professor John Williams and Professor Costanza Bonadonna for fruitful discussions. Dr. Grasselli’s work has been supported by the National Science and Engineering Research Council of Canada in the form of Discovery Grant No. 341275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Manzella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manzella, I., Einstein, H.H., Grasselli, G. (2013). DEM and FEM/DEM Modelling of Granular Flows to Investigate Large Debris Avalanche Propagation. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_33

Download citation

Publish with us

Policies and ethics