Runout Modelling of Shallow Landslides Over Large Areas with SliDepot

  • Daniel ToblerEmail author
  • Rachel Riner
  • Robert Pfeifer


The GIS-based model SliDepot simulates the runout zones of landslide prone areas. It was developed by GEOTEST AG and applied during the last 10 `years for numerous projects. In combination with the SliDisp+ software (modelling of slope instabilities, cf. Tobler and Krummenacher (Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, Lausanne, 2004); Tobler et al. (Modeling potential shallow landslides over large areas with SliDisp+. In: Proceedings of the second World landslide forum, Rome, 2011) SliDepot allows to calculate decisive parameters for the dimensioning and optimized positioning of protection measures.

In contrast to other GIS-based models “Casadei et al. (Earth Surf Process Landf 28:925–950, 2003); Godt et al. (Eng Geol 102(3–4):214–226, 2008)”, SliDepot does not rely on a single-flow approach, which calculates the flow direction by direct neighbourhood relationship. The software is capable of analysing multiple cells in a 20°-sector above a potential runout area up to the extent of four cells. The potential runout cell will only be connected to the runout area if the mentioned 20°-sector contains an instable cell or if the necessary initial volumes of mobilised mass are guaranteed. Furthermore the program also considers geomorphologic phenomena like convex topography. With this approach the runout direction is simulated fairly realistic.

The runout is based on the degradational water content of the sliding mass during its downslope movement which finally leads to the break-off. Results from a case study in Switzerland will be presented.


Shallow landslide modelling Runout modelling Protection measures Case study SliDepot model 



We would like to thank GEOTEST AG for supporting the development of the model. Thanks also to all persons involved in the technical discussions.


  1. AGN (2004) Gefahreneinstufung Rutschungen i.w.S. Permanente Rutschungen, spontane Rutschungen und Hangmuren. Entwurf, BernGoogle Scholar
  2. Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand conference on geomechanics, vol 1. Auckland, pp 391–397Google Scholar
  3. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271CrossRefGoogle Scholar
  4. Dahal RK (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of- evidence. Geomorphology 102:496–510CrossRefGoogle Scholar
  5. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228CrossRefGoogle Scholar
  6. DeRose RC (1996) Relationships between slope morphology, regolith depth, and the incidence of shallow landslides in eastern Taranaki hill country. Z Geomorphol Suppl Bd 105:49–60Google Scholar
  7. GEOTEST AG (2003) Technischer Bericht zur Gefahrenkarte Lauterbrunnen, Nr. 00063.5, Zollikofen (unpublished)Google Scholar
  8. GEOTEST AG (2007) Lauterbrunnen, Rutschung Gryfenbach, Synthese und Prognosen, Report Nr. 94152.26, Zollikofen (unpublished)Google Scholar
  9. GEOTEST AG (2011) Lauterbrunnen, Naturgefahren, Bericht zur Teilrevision Gefahrenkarte, Nr. 10151.01, Zollikofen (unpublished)Google Scholar
  10. Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, Chichester, 824pCrossRefGoogle Scholar
  11. Griffiths J, Mather AE, Hart AB (2002) Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol 35:9–18CrossRefGoogle Scholar
  12. Guimarãres RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108CrossRefGoogle Scholar
  13. Günzler-Seiffert H (1962) Geologischer Atlas der Schweiz 1:25,000, Blatt 6 Lauterbrunnen. Schweizerische Geologische KommissionGoogle Scholar
  14. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184CrossRefGoogle Scholar
  15. Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res 114:F03013. doi: 10.1029/2008JF001168 CrossRefGoogle Scholar
  16. Hancox GT, Wright K (2005) Analysis of landsliding caused by the 15–17 February 2004 rainstorm in the Wanganui-Manawatu hill country, southern North Island, New Zealand. Institute of Geological & Nuclear Sciences. Science report 2005/11, 64pGoogle Scholar
  17. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and landslide mobility. J Geophys Res 97:9063–9071CrossRefGoogle Scholar
  18. Hölting B, Enke F (1996) Einführung in die Allgemeine und Angewandte Hydrogeologie, 5th edn. Stuttgart Verlag, StuttgartGoogle Scholar
  19. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  20. LaCasse S, Nadim F (1996) Uncertainties in characterising soil properties. Geotechnical special publication no. 58, vol 1, pp 49–75Google Scholar
  21. Legorreta Paulin GL, Bursik MI (2009) Assessment of landslides susceptibility – Logisnet: a tool for multimethod, multiple soil layers slope stability analysis. Comput Geosci 35(5):1007–1016CrossRefGoogle Scholar
  22. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  23. Liener S (2000) Zur Feststofflieferung in Wildbaechen. Dissertation, Geographica Bernensia, BernGoogle Scholar
  24. Liener S, Kienholz H, Liniger M, Krummenacher B (1996) SDLISP – a procedure to locate landslide prone areas. In: Senneneset K (ed) Landslides. Balkema, Rotterdam, pp 279–284Google Scholar
  25. Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165CrossRefGoogle Scholar
  26. Liu CN, Wu CC (2008) Integrating GIS and stress transfer mechanism in mapping rainfall-triggered landslide susceptibility. Eng Geol 101:60–74CrossRefGoogle Scholar
  27. Lourenco SDN, Sassa K, Fukuoka H (2006) Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides. Geomorphology 73:115–130CrossRefGoogle Scholar
  28. Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87:207–223CrossRefGoogle Scholar
  29. Rickli Ch (2001) Vegetationswirkungen und Rutschungen. Untersuchung zum Einfluss der Vegetation auf oberflächennahe Rutschprozesse anhand der Unwetterereignisse Sachseln am 15.8.1997. Eidg. Forschungsanstalt (WSL), Birmensdorf, 97pGoogle Scholar
  30. Rickli C, Bucher H (2003) Oberflächennahe Rutschungen, ausgelöst durch die Unwetter vom 15.–16.7.2002 im Napfgebiet und vom 31.8–1.9.2002 im Gebiet Appenzell. Eidg. Forschungsanstalt (WSL) und Bundesamt für Wasser und Geologie (BWG), 75pGoogle Scholar
  31. Riner R (2009) Geotechnische Analysen von Lockergesteinen zur Modellierung von Rutschdispositionen im Untersuchungsgebiet Niesen. Masterarbeit Philosophisch-Naturwissenschaftliche Fakultät Universität Bern, 103p (unpublished)Google Scholar
  32. Salciarini D, Godt JW, Savage WZ, Conversini R, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194CrossRefGoogle Scholar
  33. Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024CrossRefGoogle Scholar
  34. Selby MH (1993) Hillslope materials and processes. Oxford University Press, OxfordGoogle Scholar
  35. Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resource Monograph 18, American Geophysical Union, Washington, DCGoogle Scholar
  36. Swissmap (2011) Topographic map Lauterbrunnen, Blatt 1228.
  37. Tobler D, Krummenacher B (2004) Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, LausanneGoogle Scholar
  38. Tobler D, Riner R, Pfeifer R (2011) Modeling potential shallow landslides over large areas with SliDisp+. In: Proceedings of the second World landslide forum, RomeGoogle Scholar
  39. VSS (1998) SN 670 010b. Bodenkennziffern, ZürichGoogle Scholar
  40. Wakatsuki T, Matsukura Y (2008) Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan, Catena. Trans Jpn Geomorphol Union 72:153–168Google Scholar
  41. Zolfaghari A, Heath AC (2008) A GIS application for assessing landslide hazard over a large area. Comput Geotech 35:278–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of BerneBernSwitzerland
  2. 2.GEOTEST AGZollikofenSwitzerland

Personalised recommendations