Skip to main content

Runout Modelling of Shallow Landslides Over Large Areas with SliDepot

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

The GIS-based model SliDepot simulates the runout zones of landslide prone areas. It was developed by GEOTEST AG and applied during the last 10 `years for numerous projects. In combination with the SliDisp+ software (modelling of slope instabilities, cf. Tobler and Krummenacher (Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, Lausanne, 2004); Tobler et al. (Modeling potential shallow landslides over large areas with SliDisp+. In: Proceedings of the second World landslide forum, Rome, 2011) SliDepot allows to calculate decisive parameters for the dimensioning and optimized positioning of protection measures.

In contrast to other GIS-based models “Casadei et al. (Earth Surf Process Landf 28:925–950, 2003); Godt et al. (Eng Geol 102(3–4):214–226, 2008)”, SliDepot does not rely on a single-flow approach, which calculates the flow direction by direct neighbourhood relationship. The software is capable of analysing multiple cells in a 20°-sector above a potential runout area up to the extent of four cells. The potential runout cell will only be connected to the runout area if the mentioned 20°-sector contains an instable cell or if the necessary initial volumes of mobilised mass are guaranteed. Furthermore the program also considers geomorphologic phenomena like convex topography. With this approach the runout direction is simulated fairly realistic.

The runout is based on the degradational water content of the sliding mass during its downslope movement which finally leads to the break-off. Results from a case study in Switzerland will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGN (2004) Gefahreneinstufung Rutschungen i.w.S. Permanente Rutschungen, spontane Rutschungen und Hangmuren. Entwurf, Bern

    Google Scholar 

  • Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand conference on geomechanics, vol 1. Auckland, pp 391–397

    Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Dahal RK (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of- evidence. Geomorphology 102:496–510

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • DeRose RC (1996) Relationships between slope morphology, regolith depth, and the incidence of shallow landslides in eastern Taranaki hill country. Z Geomorphol Suppl Bd 105:49–60

    Google Scholar 

  • GEOTEST AG (2003) Technischer Bericht zur Gefahrenkarte Lauterbrunnen, Nr. 00063.5, Zollikofen (unpublished)

    Google Scholar 

  • GEOTEST AG (2007) Lauterbrunnen, Rutschung Gryfenbach, Synthese und Prognosen, Report Nr. 94152.26, Zollikofen (unpublished)

    Google Scholar 

  • GEOTEST AG (2011) Lauterbrunnen, Naturgefahren, Bericht zur Teilrevision Gefahrenkarte, Nr. 10151.01, Zollikofen (unpublished)

    Google Scholar 

  • Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, Chichester, 824p

    Book  Google Scholar 

  • Griffiths J, Mather AE, Hart AB (2002) Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol 35:9–18

    Article  Google Scholar 

  • Guimarãres RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108

    Article  Google Scholar 

  • Günzler-Seiffert H (1962) Geologischer Atlas der Schweiz 1:25,000, Blatt 6 Lauterbrunnen. Schweizerische Geologische Kommission

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res 114:F03013. doi:10.1029/2008JF001168

    Article  Google Scholar 

  • Hancox GT, Wright K (2005) Analysis of landsliding caused by the 15–17 February 2004 rainstorm in the Wanganui-Manawatu hill country, southern North Island, New Zealand. Institute of Geological & Nuclear Sciences. Science report 2005/11, 64p

    Google Scholar 

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and landslide mobility. J Geophys Res 97:9063–9071

    Article  Google Scholar 

  • Hölting B, Enke F (1996) Einführung in die Allgemeine und Angewandte Hydrogeologie, 5th edn. Stuttgart Verlag, Stuttgart

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • LaCasse S, Nadim F (1996) Uncertainties in characterising soil properties. Geotechnical special publication no. 58, vol 1, pp 49–75

    Google Scholar 

  • Legorreta Paulin GL, Bursik MI (2009) Assessment of landslides susceptibility – Logisnet: a tool for multimethod, multiple soil layers slope stability analysis. Comput Geosci 35(5):1007–1016

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Liener S (2000) Zur Feststofflieferung in Wildbaechen. Dissertation, Geographica Bernensia, Bern

    Google Scholar 

  • Liener S, Kienholz H, Liniger M, Krummenacher B (1996) SDLISP – a procedure to locate landslide prone areas. In: Senneneset K (ed) Landslides. Balkema, Rotterdam, pp 279–284

    Google Scholar 

  • Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Liu CN, Wu CC (2008) Integrating GIS and stress transfer mechanism in mapping rainfall-triggered landslide susceptibility. Eng Geol 101:60–74

    Article  Google Scholar 

  • Lourenco SDN, Sassa K, Fukuoka H (2006) Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides. Geomorphology 73:115–130

    Article  Google Scholar 

  • Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87:207–223

    Article  Google Scholar 

  • Rickli Ch (2001) Vegetationswirkungen und Rutschungen. Untersuchung zum Einfluss der Vegetation auf oberflächennahe Rutschprozesse anhand der Unwetterereignisse Sachseln am 15.8.1997. Eidg. Forschungsanstalt (WSL), Birmensdorf, 97p

    Google Scholar 

  • Rickli C, Bucher H (2003) Oberflächennahe Rutschungen, ausgelöst durch die Unwetter vom 15.–16.7.2002 im Napfgebiet und vom 31.8–1.9.2002 im Gebiet Appenzell. Eidg. Forschungsanstalt (WSL) und Bundesamt für Wasser und Geologie (BWG), 75p

    Google Scholar 

  • Riner R (2009) Geotechnische Analysen von Lockergesteinen zur Modellierung von Rutschdispositionen im Untersuchungsgebiet Niesen. Masterarbeit Philosophisch-Naturwissenschaftliche Fakultät Universität Bern, 103p (unpublished)

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini R, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024

    Article  Google Scholar 

  • Selby MH (1993) Hillslope materials and processes. Oxford University Press, Oxford

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resource Monograph 18, American Geophysical Union, Washington, DC

    Google Scholar 

  • Swissmap (2011) Topographic map Lauterbrunnen, Blatt 1228. www.swisstopo.ch

  • Tobler D, Krummenacher B (2004) Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, Lausanne

    Google Scholar 

  • Tobler D, Riner R, Pfeifer R (2011) Modeling potential shallow landslides over large areas with SliDisp+. In: Proceedings of the second World landslide forum, Rome

    Google Scholar 

  • VSS (1998) SN 670 010b. Bodenkennziffern, Zürich

    Google Scholar 

  • Wakatsuki T, Matsukura Y (2008) Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan, Catena. Trans Jpn Geomorphol Union 72:153–168

    Google Scholar 

  • Zolfaghari A, Heath AC (2008) A GIS application for assessing landslide hazard over a large area. Comput Geotech 35:278–285

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank GEOTEST AG for supporting the development of the model. Thanks also to all persons involved in the technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tobler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobler, D., Riner, R., Pfeifer, R. (2013). Runout Modelling of Shallow Landslides Over Large Areas with SliDepot. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_32

Download citation

Publish with us

Policies and ethics