Runout Prediction of Debris Flows and Similar Mass Movements

  • Christian ScheidlEmail author
  • Dieter Rickenmann
  • Brian W. McArdell


All around the world, people meet a challenge to find a balance between the risk of natural hazards and the need for spatial developments. Densely populated hillside regions in humid, subtropical or tropical climatic zones are often prone to various types of landslides. The complex flow behaviour of such gravitationally driven mass movements is reflected by inconsistent terminologies and ambiguous definitions of various landslide types in literature (Varnes 1978; Hutchinson 1988; Hungr et al. 2001). In this paper we focus on a discussion of on runout prediction methods of flow like mass movements, particularly on debris flows, where all transported material is generally in suspension and fluid and solid particles of all sizes typically travel with the same velocity. The term runout refers to the depositional part of a landslide or debris-flow event, providing information on the areas potentially covered by the transported solid material.


Runout Debris flows Mass movements Deposition Simulation Hazard assessment 


  1. Allen KS, Schneider D, Owens IF (2009) First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps. NatHazards Earth Syst Sci 9:481–499CrossRefGoogle Scholar
  2. Armanini A, Fraccarollo L, Rosatti G (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35:993–1006CrossRefGoogle Scholar
  3. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc Roy Soc Lond 225:49–63CrossRefGoogle Scholar
  4. Barbolini M, Gubler U, Keylock CJ, Naaim M, Savi F (2000) Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Reg Sci Technol 31:133–149CrossRefGoogle Scholar
  5. Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining. J Glaciol 45:212–254CrossRefGoogle Scholar
  6. Beguería S, Asch TWJV, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897–1909CrossRefGoogle Scholar
  7. Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161CrossRefGoogle Scholar
  8. Bertolo P, Wieckzorek GF (2005) Calibration of numerical models for small debris flow in Yosemite Valley, California, USA. Nat Hazard Earth Syst Sci 5:993–1001CrossRefGoogle Scholar
  9. Cannon SH (1993) An empirical model for the volume-change behavior of debris flows. In: Shen HW, Su ST, Wen F (eds) Hydraulic engineering 93, vol 2. American Society of Civil Engineers, New York, pp 1768–1773Google Scholar
  10. Carranza EJM, Castro OT (2006) Predicting Lahar-inundation zones: case study in west Mount Pinatubo, Philippines. Nat Hazards 37:331–372CrossRefGoogle Scholar
  11. Chau KT, Chan LC, Wai WH (2000) Shape of deposition fan and runout distance of debris-flow: effects of granular and contents. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. A.A. Balkema, Rotterdam/Brookfield, pp 387–395Google Scholar
  12. Chen H, Lee CF (2004) Geohazards of slope mass movement and its prevention in Hong Kong. Eng Geol 76:3–25CrossRefGoogle Scholar
  13. Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14CrossRefGoogle Scholar
  14. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271CrossRefGoogle Scholar
  15. Coussot P (1997) Mudflow rheology and dynamics, IAHR monograph series. Balkema, RotterdamGoogle Scholar
  16. Coussot P, Laigle D, Arattano M, Deganutti A, Marchi L (1998) Direct determination of rheological characteristics of debris flow. J Hydraul Eng 124:865–868CrossRefGoogle Scholar
  17. Crosta G, Agliardi F (2003) A methodology for physically-based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422CrossRefGoogle Scholar
  18. Crosta G, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: Rickenmann D, Chen C-l (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, RotterdamGoogle Scholar
  19. D’Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304CrossRefGoogle Scholar
  20. Evans S, Guthrie RH, Robert N, Bishop N (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101CrossRefGoogle Scholar
  21. Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994CrossRefGoogle Scholar
  22. Fuchs S, Kaitna R, Scheidl C, Hübl J (2008) The application of the risk concept to debris flow hazards. Geomechanik und Tunnelbau 2:120–129CrossRefGoogle Scholar
  23. Gamma P (2000) dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung, vol G66, Geographica Bernensia. Geographisches Intitut der Universität Bern, Bern, p 144Google Scholar
  24. Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master’s thesis, Portland State University, pp 200Google Scholar
  25. Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches, vol 5276, Scientific investigations report. U.S. Geological Survey, RestonGoogle Scholar
  26. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107CrossRefGoogle Scholar
  27. Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth, ZürichGoogle Scholar
  28. Heinimann H, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1988) Methoden zur Analyse und Bewertung von Naturgefahren Umwelt Materialien. Bundesamt für Umwelt, Wald und Landschaft, Bern, p 248Google Scholar
  29. Hochschwarzer M (2009) Vergleich von Simulationsmodellen zur Reichweitenabschätzung alpi-ner Murgänge am Beispiel Südtiroler Ereignisse. Master’s thesis, University of Applied Life Sciences and Natural Ressources, p 135Google Scholar
  30. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  31. Hungr O, Evans S (1996) Rock avalanche run out prediction using a dynamic model. In: Senneset K (ed) Landslides. A.A. Balkema, Rotterdam, pp 233–238Google Scholar
  32. Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  33. Hungr O, Evans S, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238Google Scholar
  34. Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J 40:161–175CrossRefGoogle Scholar
  35. Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163CrossRefGoogle Scholar
  36. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Fifth international symposium on landslides, vol 1. A.A. Balkema, Rotterdam/Brookfield, pp 3–136Google Scholar
  37. Iverson RM (1997) The physics of debris flows. Rev Geop 35(3):245–296CrossRefGoogle Scholar
  38. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain. J Geophys Res 106:537–552CrossRefGoogle Scholar
  39. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984CrossRefGoogle Scholar
  40. Jackson L, Kostaschuk R, McDonald G (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Geol Soc Am Rev Eng Geol 7:115–124CrossRefGoogle Scholar
  41. Johnson AM, Rodine JR (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chicheste, p 257Google Scholar
  42. Kaitna R, Rickenmann D (2007) A new experimental facility for laboratory debris flow investigation. J Hydraul Res 45:797–810CrossRefGoogle Scholar
  43. Kappes MS, Malet J-P, Rematre A, Horton P, Jaboyedoff M, Bell R (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Nat Hazards Earth Syst Sci 11:627–641CrossRefGoogle Scholar
  44. Knobel R (2007) Modellierung von Murgängen und Eislawinen in Nordossetien mit Hilfe des RAMMS-Modells und systematischen Testens von Satellitenbildern. Master-thesis at the University of ZürichGoogle Scholar
  45. Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fliesslawinen. Rock Mec 8:225–256CrossRefGoogle Scholar
  46. Körner HJ (1980) Modelle zur Berechnung der Bergsturz- und Lawinenberechnung. In: Internationales symposium “Interpraevent”, vol 2. Klagenfurt, Austria, pp 15–55Google Scholar
  47. Kowalski J (2008) Two-phase modelling of debris flows. Ph.D. thesis, ETH Zürich, Dissertation, ETH No. 17827, p 135Google Scholar
  48. Länger E (2003) Der Forsttechnische Dienst für Wildbach- und Lawinenverbauung in Österreich und seine Tätigkeit seit der Gründung im Jahre 1884. Ph.D. thesis, University of Natural Resources and Life Sciences, ViennaGoogle Scholar
  49. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  50. Marchi L, Tecca P (1995) Alluvial fans of the eastern italian alps: morphology and depositional processes. Geodinamica Acta 8:20–27Google Scholar
  51. McDougall S (2006) A new continuum dynamic model for the analyses of extremely rapid landslide motion across complex 3D terrain. Dissertation at the University of British Columbia, CanadaGoogle Scholar
  52. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448CrossRefGoogle Scholar
  53. McKinnon M, Hungr O, McDougall S (2008) Dynamic analysis of Canadian landslides. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on Geohazards: from causes to management, Presse de l’Université Laval, Québec, 8pGoogle Scholar
  54. Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142CrossRefGoogle Scholar
  55. Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazards Earth Syst Sci 6:155–165CrossRefGoogle Scholar
  56. O’Brien JS, Julien PY, Fullerton W (1993) Two-dimensional water flood and mudflood simulation. J Hydraul Eng 119:244–260CrossRefGoogle Scholar
  57. Okuda S, Suwa H (1984) Some relationships between debris flow motion and microtopography for the kamikamihori fan, north Japan Alps. In: Burt TP, Walling DE (eds) Catchment experiments in fluvial geomorphology. GeoBooks, Norwich, pp 447–464Google Scholar
  58. Perla R, Cheng T, McClung D (1980) A two parameter model of snow avalanche motion. J Glaciol 26:197–208Google Scholar
  59. Pirulli M (2005) Numerical modelling of landslide runout, a continuum mechanics approach. Dissertation, Politecnico di Torino, TorinoGoogle Scholar
  60. Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazards Earth Syst Sci 8:961–971CrossRefGoogle Scholar
  61. Prochaska AB, Santi PM, Higgins J, Cannon SH (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98:29–40CrossRefGoogle Scholar
  62. RAMMS (2010) RAMMS 1.3.0 papid mass movements, a modelling system for snow-avalanches in research and practice. User Manual v 1.01, WSL, Institute for Snow and Avalanche Research SLF, pp 109Google Scholar
  63. Revellino P, Guadagno FM, Hungr O (2008) Morphological methods and dynamic modelling in landslide hazard assessment of the Campania Apennine carbonate slope. Landslides 5:59–70CrossRefGoogle Scholar
  64. Rickenmann D (1990) Debris flows 1987 in Switzerland: modelling and fluvial sediment transport. Hydrology in mountainous regions II – artificial reservoirs, water and slopes. IAHS Publication no 194, Lausanne, pp 371–378Google Scholar
  65. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77CrossRefGoogle Scholar
  66. Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena, praxis. Springer, Berlin/Heidelberg, pp 305–324CrossRefGoogle Scholar
  67. Rickenmann D, Scheidl C (2010) Modelle zur Abschätzung des Ablagerungsverhaltens von Murgängen. Wasser Energie Luft 102:17–26Google Scholar
  68. Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Computat Geosci 10:241–264CrossRefGoogle Scholar
  69. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236CrossRefGoogle Scholar
  70. Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Proc Land 35:157–173Google Scholar
  71. Scheidl C, Rickenmann D (2011)TopFlowDf – a simple GIS based model to simulate debris-flow runout on the fan. In: Genevois R, Hamilton D, Prestininzi A (eds) Proceedings of the 5th international conference on debris-flow hazards: mitigation, mechanics, prediction and assessment. Italian journal of engineering geology and environment-book, Padua, pp 253–262Google Scholar
  72. Scheuner T (2007) Modellierung von Murgangereignissen mit RAMMS und Vergleich durch GIS-basiertes Fliessmodell. Master thesis at the University of Zürich, p 106Google Scholar
  73. Schilling SP (1998) GIS programs for automated mapping of lahar-inundation hazard zones. U.S. Geological Survey Open-File Report, U.S. Geological Survey, Vancouver, p 98Google Scholar
  74. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26CrossRefGoogle Scholar
  75. Stricker B (2010) Murgänge im Torrente Riascio (TI): Ereignisanalyse, Auslösefaktoren und Simulation von Ereignissen mit RAMMS. Master thesis at the University of Zürich, p 104Google Scholar
  76. Takahashi T (1991) Debris flow. A.A. Balkema, Rotterdam/BrookfieldGoogle Scholar
  77. Takahashi T, Yoshida H (1979) Study on the deposition of debris flows, part 1-Deposition due to abrupt change of bed slope. Annuals, Disaster Prevention Research Institute, Kyoto University, p 22Google Scholar
  78. Tecca P, Genevois R, Deganutti A, Armento M (2007) Numerical modelling of two debris flows in the Dolomites (Northeastern Italian Alps). In: Chen-lung C, Major JJ (eds) Fourth international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Millpress-Rotterdam, ChengduGoogle Scholar
  79. Toyos G, Gunasekera R, Zanchetta G, Oppenheimer C, Sulpizio R, Favalli M, Pareschi MT (2008) GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surf Proc Land 33:1693–1708CrossRefGoogle Scholar
  80. VanDine DF (1996) Debris flow control structures for forest engineering. Working paper, Ministry of Forest Research Program, Victoria, British Columbia, pp 75Google Scholar
  81. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, vol 176, Transportation research board, Special report. National Academy of Sciences, Washington, DC, pp 11–33Google Scholar
  82. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73(12):159–162, (15), pp. 212–217, (17), pp. 246–249, (19), pp. 280–285Google Scholar
  83. Zimmermann M, Mani P, Gamma P, Gsteiger P, Heiniger O, Hunziker G (1997) Murganggefahr und Klimaanderung: ein GIS-basierter Ansatz. (Schlussbericht NFP 31, p 161), ETH, ZurichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Scheidl
    • 1
    Email author
  • Dieter Rickenmann
    • 2
  • Brian W. McArdell
    • 2
  1. 1.University of Natural Resources and Life SciencesViennaAustria
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations