Skip to main content

Runout Prediction of Debris Flows and Similar Mass Movements

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

All around the world, people meet a challenge to find a balance between the risk of natural hazards and the need for spatial developments. Densely populated hillside regions in humid, subtropical or tropical climatic zones are often prone to various types of landslides. The complex flow behaviour of such gravitationally driven mass movements is reflected by inconsistent terminologies and ambiguous definitions of various landslide types in literature (Varnes 1978; Hutchinson 1988; Hungr et al. 2001). In this paper we focus on a discussion of on runout prediction methods of flow like mass movements, particularly on debris flows, where all transported material is generally in suspension and fluid and solid particles of all sizes typically travel with the same velocity. The term runout refers to the depositional part of a landslide or debris-flow event, providing information on the areas potentially covered by the transported solid material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KS, Schneider D, Owens IF (2009) First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps. NatHazards Earth Syst Sci 9:481–499

    Article  Google Scholar 

  • Armanini A, Fraccarollo L, Rosatti G (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35:993–1006

    Article  Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc Roy Soc Lond 225:49–63

    Article  Google Scholar 

  • Barbolini M, Gubler U, Keylock CJ, Naaim M, Savi F (2000) Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Reg Sci Technol 31:133–149

    Article  Google Scholar 

  • Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining. J Glaciol 45:212–254

    Article  Google Scholar 

  • Beguería S, Asch TWJV, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897–1909

    Article  Google Scholar 

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161

    Article  Google Scholar 

  • Bertolo P, Wieckzorek GF (2005) Calibration of numerical models for small debris flow in Yosemite Valley, California, USA. Nat Hazard Earth Syst Sci 5:993–1001

    Article  Google Scholar 

  • Cannon SH (1993) An empirical model for the volume-change behavior of debris flows. In: Shen HW, Su ST, Wen F (eds) Hydraulic engineering 93, vol 2. American Society of Civil Engineers, New York, pp 1768–1773

    Google Scholar 

  • Carranza EJM, Castro OT (2006) Predicting Lahar-inundation zones: case study in west Mount Pinatubo, Philippines. Nat Hazards 37:331–372

    Article  Google Scholar 

  • Chau KT, Chan LC, Wai WH (2000) Shape of deposition fan and runout distance of debris-flow: effects of granular and contents. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. A.A. Balkema, Rotterdam/Brookfield, pp 387–395

    Google Scholar 

  • Chen H, Lee CF (2004) Geohazards of slope mass movement and its prevention in Hong Kong. Eng Geol 76:3–25

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Coussot P (1997) Mudflow rheology and dynamics, IAHR monograph series. Balkema, Rotterdam

    Google Scholar 

  • Coussot P, Laigle D, Arattano M, Deganutti A, Marchi L (1998) Direct determination of rheological characteristics of debris flow. J Hydraul Eng 124:865–868

    Article  Google Scholar 

  • Crosta G, Agliardi F (2003) A methodology for physically-based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Crosta G, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: Rickenmann D, Chen C-l (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam

    Google Scholar 

  • D’Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304

    Article  Google Scholar 

  • Evans S, Guthrie RH, Robert N, Bishop N (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994

    Article  Google Scholar 

  • Fuchs S, Kaitna R, Scheidl C, Hübl J (2008) The application of the risk concept to debris flow hazards. Geomechanik und Tunnelbau 2:120–129

    Article  Google Scholar 

  • Gamma P (2000) dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung, vol G66, Geographica Bernensia. Geographisches Intitut der Universität Bern, Bern, p 144

    Google Scholar 

  • Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master’s thesis, Portland State University, pp 200

    Google Scholar 

  • Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches, vol 5276, Scientific investigations report. U.S. Geological Survey, Reston

    Google Scholar 

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth, Zürich

    Google Scholar 

  • Heinimann H, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1988) Methoden zur Analyse und Bewertung von Naturgefahren Umwelt Materialien. Bundesamt für Umwelt, Wald und Landschaft, Bern, p 248

    Google Scholar 

  • Hochschwarzer M (2009) Vergleich von Simulationsmodellen zur Reichweitenabschätzung alpi-ner Murgänge am Beispiel Südtiroler Ereignisse. Master’s thesis, University of Applied Life Sciences and Natural Ressources, p 135

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • Hungr O, Evans S (1996) Rock avalanche run out prediction using a dynamic model. In: Senneset K (ed) Landslides. A.A. Balkema, Rotterdam, pp 233–238

    Google Scholar 

  • Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677

    Article  Google Scholar 

  • Hungr O, Evans S, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Google Scholar 

  • Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J 40:161–175

    Article  Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163

    Article  Google Scholar 

  • Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Fifth international symposium on landslides, vol 1. A.A. Balkema, Rotterdam/Brookfield, pp 3–136

    Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geop 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain. J Geophys Res 106:537–552

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Jackson L, Kostaschuk R, McDonald G (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Geol Soc Am Rev Eng Geol 7:115–124

    Article  Google Scholar 

  • Johnson AM, Rodine JR (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chicheste, p 257

    Google Scholar 

  • Kaitna R, Rickenmann D (2007) A new experimental facility for laboratory debris flow investigation. J Hydraul Res 45:797–810

    Article  Google Scholar 

  • Kappes MS, Malet J-P, Rematre A, Horton P, Jaboyedoff M, Bell R (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Nat Hazards Earth Syst Sci 11:627–641

    Article  Google Scholar 

  • Knobel R (2007) Modellierung von Murgängen und Eislawinen in Nordossetien mit Hilfe des RAMMS-Modells und systematischen Testens von Satellitenbildern. Master-thesis at the University of Zürich

    Google Scholar 

  • Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fliesslawinen. Rock Mec 8:225–256

    Article  Google Scholar 

  • Körner HJ (1980) Modelle zur Berechnung der Bergsturz- und Lawinenberechnung. In: Internationales symposium “Interpraevent”, vol 2. Klagenfurt, Austria, pp 15–55

    Google Scholar 

  • Kowalski J (2008) Two-phase modelling of debris flows. Ph.D. thesis, ETH Zürich, Dissertation, ETH No. 17827, p 135

    Google Scholar 

  • Länger E (2003) Der Forsttechnische Dienst für Wildbach- und Lawinenverbauung in Österreich und seine Tätigkeit seit der Gründung im Jahre 1884. Ph.D. thesis, University of Natural Resources and Life Sciences, Vienna

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Marchi L, Tecca P (1995) Alluvial fans of the eastern italian alps: morphology and depositional processes. Geodinamica Acta 8:20–27

    Google Scholar 

  • McDougall S (2006) A new continuum dynamic model for the analyses of extremely rapid landslide motion across complex 3D terrain. Dissertation at the University of British Columbia, Canada

    Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448

    Article  Google Scholar 

  • McKinnon M, Hungr O, McDougall S (2008) Dynamic analysis of Canadian landslides. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on Geohazards: from causes to management, Presse de l’Université Laval, Québec, 8p

    Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142

    Article  Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazards Earth Syst Sci 6:155–165

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton W (1993) Two-dimensional water flood and mudflood simulation. J Hydraul Eng 119:244–260

    Article  Google Scholar 

  • Okuda S, Suwa H (1984) Some relationships between debris flow motion and microtopography for the kamikamihori fan, north Japan Alps. In: Burt TP, Walling DE (eds) Catchment experiments in fluvial geomorphology. GeoBooks, Norwich, pp 447–464

    Google Scholar 

  • Perla R, Cheng T, McClung D (1980) A two parameter model of snow avalanche motion. J Glaciol 26:197–208

    Google Scholar 

  • Pirulli M (2005) Numerical modelling of landslide runout, a continuum mechanics approach. Dissertation, Politecnico di Torino, Torino

    Google Scholar 

  • Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazards Earth Syst Sci 8:961–971

    Article  Google Scholar 

  • Prochaska AB, Santi PM, Higgins J, Cannon SH (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98:29–40

    Article  Google Scholar 

  • RAMMS (2010) RAMMS 1.3.0 papid mass movements, a modelling system for snow-avalanches in research and practice. User Manual v 1.01, WSL, Institute for Snow and Avalanche Research SLF, pp 109

    Google Scholar 

  • Revellino P, Guadagno FM, Hungr O (2008) Morphological methods and dynamic modelling in landslide hazard assessment of the Campania Apennine carbonate slope. Landslides 5:59–70

    Article  Google Scholar 

  • Rickenmann D (1990) Debris flows 1987 in Switzerland: modelling and fluvial sediment transport. Hydrology in mountainous regions II – artificial reservoirs, water and slopes. IAHS Publication no 194, Lausanne, pp 371–378

    Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77

    Article  Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena, praxis. Springer, Berlin/Heidelberg, pp 305–324

    Chapter  Google Scholar 

  • Rickenmann D, Scheidl C (2010) Modelle zur Abschätzung des Ablagerungsverhaltens von Murgängen. Wasser Energie Luft 102:17–26

    Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Computat Geosci 10:241–264

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Proc Land 35:157–173

    Google Scholar 

  • Scheidl C, Rickenmann D (2011)TopFlowDf – a simple GIS based model to simulate debris-flow runout on the fan. In: Genevois R, Hamilton D, Prestininzi A (eds) Proceedings of the 5th international conference on debris-flow hazards: mitigation, mechanics, prediction and assessment. Italian journal of engineering geology and environment-book, Padua, pp 253–262

    Google Scholar 

  • Scheuner T (2007) Modellierung von Murgangereignissen mit RAMMS und Vergleich durch GIS-basiertes Fliessmodell. Master thesis at the University of Zürich, p 106

    Google Scholar 

  • Schilling SP (1998) GIS programs for automated mapping of lahar-inundation hazard zones. U.S. Geological Survey Open-File Report, U.S. Geological Survey, Vancouver, p 98

    Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26

    Article  Google Scholar 

  • Stricker B (2010) Murgänge im Torrente Riascio (TI): Ereignisanalyse, Auslösefaktoren und Simulation von Ereignissen mit RAMMS. Master thesis at the University of Zürich, p 104

    Google Scholar 

  • Takahashi T (1991) Debris flow. A.A. Balkema, Rotterdam/Brookfield

    Google Scholar 

  • Takahashi T, Yoshida H (1979) Study on the deposition of debris flows, part 1-Deposition due to abrupt change of bed slope. Annuals, Disaster Prevention Research Institute, Kyoto University, p 22

    Google Scholar 

  • Tecca P, Genevois R, Deganutti A, Armento M (2007) Numerical modelling of two debris flows in the Dolomites (Northeastern Italian Alps). In: Chen-lung C, Major JJ (eds) Fourth international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Millpress-Rotterdam, Chengdu

    Google Scholar 

  • Toyos G, Gunasekera R, Zanchetta G, Oppenheimer C, Sulpizio R, Favalli M, Pareschi MT (2008) GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surf Proc Land 33:1693–1708

    Article  Google Scholar 

  • VanDine DF (1996) Debris flow control structures for forest engineering. Working paper, Ministry of Forest Research Program, Victoria, British Columbia, pp 75

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, vol 176, Transportation research board, Special report. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73(12):159–162, (15), pp. 212–217, (17), pp. 246–249, (19), pp. 280–285

    Google Scholar 

  • Zimmermann M, Mani P, Gamma P, Gsteiger P, Heiniger O, Hunziker G (1997) Murganggefahr und Klimaanderung: ein GIS-basierter Ansatz. (Schlussbericht NFP 31, p 161), ETH, Zurich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Scheidl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheidl, C., Rickenmann, D., McArdell, B.W. (2013). Runout Prediction of Debris Flows and Similar Mass Movements. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_30

Download citation

Publish with us

Policies and ethics