Skip to main content

Challenging Calibration in 3D Rockfall Modelling

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Rock fall hazard assessment is a very demanding problem because of the complexity of the involved physics and its intrinsic stochasticity. New powerful tools, developed in the last few years, are characterized by different degrees of completeness, models, and algorithms. In the following, the modelling approach developed through the years within the code Hy_Stone is presented. Some issues related to the sensitivity to 3D topographic descriptions, the effects of stochasticity on model results and the calibration of 3D rockfall simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agliardi F, Crosta G (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40(4):455–471

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazard Earth Syst Sci 9(4):1059–1073

    Article  Google Scholar 

  • Azzoni A, De Freitas MH (1995) Experimentally gained parameters, decisive for rock fall analysis. Rock Mech Rock Eng 28(2):111–124

    Article  Google Scholar 

  • Azzoni A, Rossi PP, Drigo E, Giani GP, Zaninetti A (1992) In situ observations of rockfalls analysis parameters. In: Proceedings of the sixth international symposium of landslides. Balkema, Rotterdam, pp 307–314

    Google Scholar 

  • Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rock falls using a mathematical model. Int J Rock Mech Min Sci Geomech Abstr 32(7):709–724

    Article  Google Scholar 

  • Bourrier F, Nicot F, Darve F (2008) Physical processes within a 2D granular layer during an impact. Granul Matter 10(6):415–437

    Article  Google Scholar 

  • Bozzolo D, Pamini R (1986) Simulation of rock falls down a valley side. Acta Mech 63:113–130

    Article  Google Scholar 

  • Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazard Earth Syst Sci 4:583–598

    Article  Google Scholar 

  • Crosta GB, Agliardi F, Frattini P, Imposimato S (2004) A three-dimensional hybrid numerical model for rockfall simulation. Geophys Res Abstr 6:04502

    Google Scholar 

  • Crosta GB, Agliardi F, Frattini P (2005) Modelling rockfall impact on structures. Geophysical Research Abstracts, EGU05-A-08555; H3.01-1WE4P-0110

    Google Scholar 

  • Crosta GB, Frattini P, Imposimato S, Agliardi F (2006) Modeling vegetation and fragmentation effects on rockfalls. Geophys Res Abstr 8:07694

    Google Scholar 

  • Comunità Montana del Gemonese (1977) Carta geostatica del Comune di Venzone. Direzione Nazionale dei Lavori Pubblici, Servizio delle Calamità Naturali, Regione Friuli Venezia Giulia

    Google Scholar 

  • Di Prisco C, Vecchiotti M (2006) A rheological model for the description of boulder impacts on granular strata. Geotechnique 56:469–482

    Article  Google Scholar 

  • Dorren LKA, Berger F, Putters US (2006) Real size experiments and 3D simulation of rockfall on forested and non-forested slopes. Nat Hazard Earth Syst Sci 6:145–153

    Article  Google Scholar 

  • Falcetta JL (1985) Un nouveau modele de calcul de trajectoires de blocs rocheux. Revue Francaise de Geotechnique 30:11–17, in French

    Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3–4):419–437

    Article  Google Scholar 

  • Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. In: Clague JJ, Stead (eds) Landslides types, mechanisms and modeling. Cambridge University Press, pp 267–281. ISBN:978-1-107-00206-7

    Google Scholar 

  • Govi M (1977) Carta delle frane prodotte dal terremoto (Map showing the landslides triggered by the earthquake). Rivista Italiana di Paleontologia e Stratigrafia 83, Plate 1

    Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28(9):1081–1095

    Google Scholar 

  • Jones CL, Higgins JD, Andrew RD (2000) Colorado rock fall simulation Program version 4.0. Colorado Department of Transportation, Colorado Geological Survey, 127p

    Google Scholar 

  • Labiouse V, Heidenreich B (2009) Half-scale experimental study of rockfall impacts on sandy slopes. Nat Hazard Earth Syst Sci 9:1981–1993

    Article  Google Scholar 

  • Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279

    Article  Google Scholar 

  • Onofri R, Candian C (1979) Indagine sui limiti di massima invasione dei blocchi rocciosi franati durante il sisma del Friuli del 1976. Regione Autonoma Friuli-Venezia-Giulia: CLUET, 42pp

    Google Scholar 

  • Paronuzzi P (1989) Probabilistic approach for design optimization of rockfall protective barriers. Q J Eng Geol Hydrogeol 22:175–183

    Article  Google Scholar 

  • Pfeiffer TJ, Bowen TD (1989) Computer simulations of rockfalls. Bull Assoc Eng Geol 26:135–146

    Google Scholar 

  • Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using Bighorn sheep in the Mojave Desert. J Wildl Manage 71(5):1419–1426

    Article  Google Scholar 

  • Ushiro T, Shinohara S, Tanida K, Yagi N (2000) A study on the motion of rockfalls on slopes. In: Proceedings of the 5th symposium on impact problems in civil engineering. Japan Society of Civil Engineers, Tokio, Japan, pp 91–96

    Google Scholar 

  • Wong RH, Ho KW, Chau KT (2000) Shape and mechanical properties of slope material effects on the coefficient of restitution on rockfall study. In: Proceedings of the 4th North American rock mechanics symposium NARMS 2000, Seattle, pp 507–514

    Google Scholar 

Download references

Acknowledgments

This work has been partially carried out within the MASSMOVE Interreg II project. Emanuela Barbanti and Francesca Colucci from the University of Milano – Bicocca performed part of the modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frattini, P., Crosta, G.B., Agliardi, F., Imposimato, S. (2013). Challenging Calibration in 3D Rockfall Modelling. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_23

Download citation

Publish with us

Policies and ethics