Advertisement

Challenging Calibration in 3D Rockfall Modelling

  • Paolo FrattiniEmail author
  • Giovanni B. Crosta
  • Federico Agliardi
  • Silvia Imposimato
Chapter

Abstract

Rock fall hazard assessment is a very demanding problem because of the complexity of the involved physics and its intrinsic stochasticity. New powerful tools, developed in the last few years, are characterized by different degrees of completeness, models, and algorithms. In the following, the modelling approach developed through the years within the code Hy_Stone is presented. Some issues related to the sensitivity to 3D topographic descriptions, the effects of stochasticity on model results and the calibration of 3D rockfall simulation are presented.

Keywords

Rockfall modelling DEM ruggedness DEM resolution Stochasticity Calibration 

Notes

Acknowledgments

This work has been partially carried out within the MASSMOVE Interreg II project. Emanuela Barbanti and Francesca Colucci from the University of Milano – Bicocca performed part of the modelling.

References

  1. Agliardi F, Crosta G (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40(4):455–471CrossRefGoogle Scholar
  2. Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazard Earth Syst Sci 9(4):1059–1073CrossRefGoogle Scholar
  3. Azzoni A, De Freitas MH (1995) Experimentally gained parameters, decisive for rock fall analysis. Rock Mech Rock Eng 28(2):111–124CrossRefGoogle Scholar
  4. Azzoni A, Rossi PP, Drigo E, Giani GP, Zaninetti A (1992) In situ observations of rockfalls analysis parameters. In: Proceedings of the sixth international symposium of landslides. Balkema, Rotterdam, pp 307–314Google Scholar
  5. Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rock falls using a mathematical model. Int J Rock Mech Min Sci Geomech Abstr 32(7):709–724CrossRefGoogle Scholar
  6. Bourrier F, Nicot F, Darve F (2008) Physical processes within a 2D granular layer during an impact. Granul Matter 10(6):415–437CrossRefGoogle Scholar
  7. Bozzolo D, Pamini R (1986) Simulation of rock falls down a valley side. Acta Mech 63:113–130CrossRefGoogle Scholar
  8. Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77CrossRefGoogle Scholar
  9. Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazard Earth Syst Sci 4:583–598CrossRefGoogle Scholar
  10. Crosta GB, Agliardi F, Frattini P, Imposimato S (2004) A three-dimensional hybrid numerical model for rockfall simulation. Geophys Res Abstr 6:04502Google Scholar
  11. Crosta GB, Agliardi F, Frattini P (2005) Modelling rockfall impact on structures. Geophysical Research Abstracts, EGU05-A-08555; H3.01-1WE4P-0110Google Scholar
  12. Crosta GB, Frattini P, Imposimato S, Agliardi F (2006) Modeling vegetation and fragmentation effects on rockfalls. Geophys Res Abstr 8:07694Google Scholar
  13. Comunità Montana del Gemonese (1977) Carta geostatica del Comune di Venzone. Direzione Nazionale dei Lavori Pubblici, Servizio delle Calamità Naturali, Regione Friuli Venezia GiuliaGoogle Scholar
  14. Di Prisco C, Vecchiotti M (2006) A rheological model for the description of boulder impacts on granular strata. Geotechnique 56:469–482CrossRefGoogle Scholar
  15. Dorren LKA, Berger F, Putters US (2006) Real size experiments and 3D simulation of rockfall on forested and non-forested slopes. Nat Hazard Earth Syst Sci 6:145–153CrossRefGoogle Scholar
  16. Falcetta JL (1985) Un nouveau modele de calcul de trajectoires de blocs rocheux. Revue Francaise de Geotechnique 30:11–17, in FrenchGoogle Scholar
  17. Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3–4):419–437CrossRefGoogle Scholar
  18. Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. In: Clague JJ, Stead (eds) Landslides types, mechanisms and modeling. Cambridge University Press, pp 267–281. ISBN:978-1-107-00206-7Google Scholar
  19. Govi M (1977) Carta delle frane prodotte dal terremoto (Map showing the landslides triggered by the earthquake). Rivista Italiana di Paleontologia e Stratigrafia 83, Plate 1Google Scholar
  20. Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28(9):1081–1095Google Scholar
  21. Jones CL, Higgins JD, Andrew RD (2000) Colorado rock fall simulation Program version 4.0. Colorado Department of Transportation, Colorado Geological Survey, 127pGoogle Scholar
  22. Labiouse V, Heidenreich B (2009) Half-scale experimental study of rockfall impacts on sandy slopes. Nat Hazard Earth Syst Sci 9:1981–1993CrossRefGoogle Scholar
  23. Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279CrossRefGoogle Scholar
  24. Onofri R, Candian C (1979) Indagine sui limiti di massima invasione dei blocchi rocciosi franati durante il sisma del Friuli del 1976. Regione Autonoma Friuli-Venezia-Giulia: CLUET, 42ppGoogle Scholar
  25. Paronuzzi P (1989) Probabilistic approach for design optimization of rockfall protective barriers. Q J Eng Geol Hydrogeol 22:175–183CrossRefGoogle Scholar
  26. Pfeiffer TJ, Bowen TD (1989) Computer simulations of rockfalls. Bull Assoc Eng Geol 26:135–146Google Scholar
  27. Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using Bighorn sheep in the Mojave Desert. J Wildl Manage 71(5):1419–1426CrossRefGoogle Scholar
  28. Ushiro T, Shinohara S, Tanida K, Yagi N (2000) A study on the motion of rockfalls on slopes. In: Proceedings of the 5th symposium on impact problems in civil engineering. Japan Society of Civil Engineers, Tokio, Japan, pp 91–96Google Scholar
  29. Wong RH, Ho KW, Chau KT (2000) Shape and mechanical properties of slope material effects on the coefficient of restitution on rockfall study. In: Proceedings of the 4th North American rock mechanics symposium NARMS 2000, Seattle, pp 507–514Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paolo Frattini
    • 1
    Email author
  • Giovanni B. Crosta
    • 1
  • Federico Agliardi
    • 1
  • Silvia Imposimato
    • 2
  1. 1.Dipartimento di Scienze Geologiche e GeotecnologieUniversità di Milano-BicoccaMilanItaly
  2. 2.FEAT, Finite Element Application TechnologyHeerlenThe Netherlands

Personalised recommendations