Skip to main content

Geological and Geophysical Tests to Model a Small Landslide in the Langhe Hills

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

In April 2009, North-West Italy was interested by heavy rainfalls that triggered several landslides, especially of shallow type, and caused relevant rise of water level in many rivers, in some cases even beyond the alert level. Particularly in the hills near Alba (NW Italy), many landslides occurred, most of them belonging to the debris flow or soil slip types. In this area, a small but interesting landslide involved a local road and a high quality, recently planted, vineyard. The present study shows the use of different disciplinary approaches focused to understand the behaviour of this landslide: in particular, besides geological and geomorphologic studies, detailed topographic and geophysical surveys together with an in situ geotechnical/geomechanic characterization were applied. The combined interpretation of the different techniques and of field observations allowed to define a geological and technical model of the landslide, both in surface than in depth, that clarified the triggering mechanism of the landslide and allowed to perform a back analysis on both strength and pore pressure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Article  Google Scholar 

  • Bogoslovsky VA, Ogilvy AA (1977) Geophysical methods for the investigation of landslides. Geophysics 42:562–571

    Article  Google Scholar 

  • Bottino G, Mandrone G, Torta D, Vigna B (2000) Recent morphological evolution and slope instability in a hilly area of piedmont (North Italy). In: Proceedings of the international symposium on engineering. geology, hydrogeology and natural disasters, Katmandù, Nepal. J Nepal Geol Soc, vol 22, pp 67–76

    Google Scholar 

  • Bruno F, Marillier F (2000) Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surv Geophys 21:333–348

    Article  Google Scholar 

  • Campus S, Forlati F, Scavia C (2000) Preliminary study for landslides hazard assessments: GIS technique and multivariate statistical approach. In: Proceedings of the 8th international symposium on landslide, Cardiff, 26–30 June, vol 1, pp 215–220

    Google Scholar 

  • Chelli A, Mandrone G, Truffelli G (2006) Field investigations and monitoring as tools for modelling the Rossena castle landslide (northern Apennines – Italy). Landslides 3:252–259

    Article  Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35:131–145

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, Special report no. 247, National Research Council, Washington, DC, pp 36–75

    Google Scholar 

  • Gelati R, Falletti P (1996) The piedmont tertiary Basin. Giorn Geol 58:11–18

    Google Scholar 

  • Godio A, Bottino G (2001) Electrical and electromagnetic investigation for landslide characterisation. Phys Chem Earth 26:705–710

    Google Scholar 

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Article  Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci Geomech Abstr 34(8):1165–1186

    Article  Google Scholar 

  • Jongmans D, Hemroulle P, Demanet D, Renardy F, Vanbrabant Y (2000) Application of 2-D electrical and seismic tomography techniques for investigating landslides. Eur J Environ Eng Geophys 5:75–89

    Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Mandrone G (2004) Il ruolo dell’acqua nell’innesco di frane planari negli ammassi rocciosi eterogeneo delle Langhe (Italia nord-occidentale). GEAM 112:83–92

    Google Scholar 

  • Mandrone G (2006) Engineering geological mapping of heterogeneous rock masses in the North Apennines: an example from the Parma Valley (Italy). Bull Eng Geol Env 65:245–252

    Article  Google Scholar 

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as Flysch. Bull Eng Geol Environ 60:85–92

    Article  Google Scholar 

  • Mauritsch HJ, Seiberl W, Arndt R, Römer A, Schneiderbauer K, Sendlhofer GP (2000) Geophysical investigations of large landslides in the Carnic region of southern Austria. Eng Geol 56:373–388

    Article  Google Scholar 

  • McCann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78

    Article  Google Scholar 

  • Sambuelli L, Deidda GP (1999) Swyphonetm: a new seismic sensor with increased response to SH-waves. In: Proceedings of the 5th meeting of environmental and engineering geophysical society, Budapest

    Google Scholar 

  • Suzuki K, Higashi S (2001) Groundwater flow after heavy rain in landslide–slope area from 2-D inversion of resistivity monitoring data. Geophysics 66:733–743

    Article  Google Scholar 

Download references

Acknowledgments

We are glad to two students in Geology at Turin Faculty of Science (Miss Antonietti and Potì) that helped in collecting row data and to Dr. Sara Castagna who helped in a preliminary edition of the paper. Many thanks also to Giorgio Carbotta and Luigi Perotti for technical support in the field measurements. We are indebted with Politecnico di Torino for the permission of using geophysical instrumentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Bonetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonetto, S., Comina, C., Giuliani, A., Mandrone, G. (2013). Geological and Geophysical Tests to Model a Small Landslide in the Langhe Hills. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_14

Download citation

Publish with us

Policies and ethics