Shallow-Landslide Susceptibility in the Costa Viola Mountain Ridge (Italia)

  • Giulio G. R. IovineEmail author
  • Roberto Greco
  • Stefano L. Gariano
  • Pasquale Iaquinta
  • Annamaria Pellegrino
  • Oreste G. Terranova


The “Costa Viola” mountain ridge (Calabria) is exposed to severe geo-hydrological risk conditions, especially in the sector between Bagnara Calabra and Scilla. This sector has repeatedly been affected by slope instability events in the past, mainly related to debris slides, rock falls and debris flows.

An attempt of shallow-landslide susceptibility mapping has been performed for the mentioned coastal sector through a logistic regression (LR) approach. LR is a multivariate type of analysis that allows estimating the presence/absence of a phenomenon in terms of probability (ranging between 0 and 1), on the basis of linear statistical relationships with a set of independent territorial variables.

The adopted LR procedure consists of four steps: (1) variable parameterization, (2) sampling, (3) fitting, and (4) application. Obtained results can be considered acceptable, as 85.6% of cells are correctly classified.


Shallow-landslide Susceptibility Logistic regression 


  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  2. Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):371–383Google Scholar
  3. Ayalew L, Yamagishi H (2005) The application GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology 65:15–31CrossRefGoogle Scholar
  4. Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26:1251–1263CrossRefGoogle Scholar
  5. Bonavina M, Bozzano F, Martino S, Pellegrino A, Prestininzi A, Scandurra R (2005) Mud and debris flows along the coastal slope between Bagnara Calabra and Scilla (Reggio Calabria): susceptibility evaluations (in Italian). Giornale di Geologia Applicata 2:65–74Google Scholar
  6. Burton AN (1971) Carta Geologica della Calabria (1:25,000). Relazione Generale. Cassa per Opere Straordinarie di Pubblico Interesse nell’Italia Meridionale (Cassa per il Mezzogiorno). 120pGoogle Scholar
  7. Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426CrossRefGoogle Scholar
  8. Carrara A, Guzzetti F (eds) (1995) Geographical information systems in assessing natural hazard. Kluwer, Dordrecht, 342pGoogle Scholar
  9. Carrara A, Pugliese Caratelli E, Merenda L (1977) Computer-based data bank and statistical analysis of slope instability phenomena. Z Geomorph N F 21(2):187–222Google Scholar
  10. Carrara A, Sorriso-Valvo M, Reali C (1982) Analysis of landslide form and incidence by statistical techniques, Southern Italy. Catena 9:35–62CrossRefGoogle Scholar
  11. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16(5):427–445CrossRefGoogle Scholar
  12. Chung C, Fabbri A, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazard. Kluwer, Dordrecht, pp 107–142CrossRefGoogle Scholar
  13. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228CrossRefGoogle Scholar
  14. European Environment Agency (2007) CORINE Land Cover CLC2006 technical guidelines. EEA technical report 17/2007, 70p. ISBN 978-92-9167-968-3Google Scholar
  15. Greco R, Sorriso-Valvo GM, Catalano E (2007) Logistic regression analysis in the evaluation of mass-movement susceptibility: the Aspromonte case study, Calabria, Italy. Eng Geol 89:47–66CrossRefGoogle Scholar
  16. Gullà G, Antronico L, Iaquinta P, Terranova O (2008) Susceptibility and triggering scenarios at a regional scale for shallow landslides. Geomorphology 99:39–58CrossRefGoogle Scholar
  17. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  18. Hosmer DW, Lemeshow S (1989) Applied regression analysis. Wiley, New York, 307pGoogle Scholar
  19. Iovine G (2008) Mud-flow and lava-flow susceptibility and hazard mapping through numerical modelling, GIS techniques, historical and geoenvironmental analyses. In: Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A, Guariso G (eds) Proceedings of 4th biennial meeting of iEMSs, Barcelona, pp 1447–1460Google Scholar
  20. Iovine G, Mangraviti P, (2009) The CA-model FLOW-S* for flow-type landslides: an introductory account. In: Anderssen RS, Braddock RD, Newham LTH (eds) Proceedings of 18th World IMACS/MODSIM congress, Cairns, 13–17 July 2009, pp 2679–2685Google Scholar
  21. Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26CrossRefGoogle Scholar
  22. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological application. Hydrol Process 5:3–30CrossRefGoogle Scholar
  23. Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191CrossRefGoogle Scholar
  24. Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343CrossRefGoogle Scholar
  25. Pellegrino A, Borrelli S, (2007) Analisi del dissesto da frana in Calabria. In: Trigila A (ed) Rapporto sulle frane in Italia. Il progetto IFFI – Metodologia, risultati e rapporti regionali. Rapporti 78/2007. APAT, Roma (978-88-448-0310-0), 681 pGoogle Scholar
  26. Reger JP (1979) Discriminant analysis as possible tool in landslide investigations. Earth Surf Process Landf 4:267–273CrossRefGoogle Scholar
  27. ARSSA – Regione Calabria (2003) I Suoli della Calabria (Carta in scala 1:250.000). Monografia divulgativa. 387pGoogle Scholar
  28. Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecast. Geomorphology 114:129–142CrossRefGoogle Scholar
  29. Sorriso-Valvo M (1993) The geomorphology of Calabria, a sketch. Geografia Fisica e Dinamica Quaternaria 16:75–80Google Scholar
  30. Sorriso-Valvo M, Greco G, Catalano E (2009) Spatial prediction of regional scale mass movement using the logistic regression analysis and GIS – Calabria, Italy. Isr J Earth Sci 57:263–280CrossRefGoogle Scholar
  31. Tortorici L (1982) Lineamenti geologico-strutturali dell’Arco Calabro-Peloritano. Rendiconti della Società Italiana di Mineralogia e Petrologia 38:927–940Google Scholar
  32. Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian Arc (Southern Italy). Tectonophysiscs 243:37–55CrossRefGoogle Scholar
  33. Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115:141–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giulio G. R. Iovine
    • 1
    Email author
  • Roberto Greco
    • 1
  • Stefano L. Gariano
    • 1
  • Pasquale Iaquinta
    • 1
  • Annamaria Pellegrino
    • 2
  • Oreste G. Terranova
    • 1
  1. 1.CNR-IRPI – U.O.S. of CosenzaRende, CosenzaItaly
  2. 2.ABR CalabriaCatanzaroItaly

Personalised recommendations