A New Multi-camera Based Facial Expression Analysis Concept

  • Robert Niese
  • Ayoub Al-Hamadi
  • Bernd Michaelis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


In his paper we describe a multi-camera based concept for facial expression recognition, which is of potential interest for modern man-machine-interfaces. Naturally, the recognition of facial user events is limited by the field of view of the applied cameras. However, in some application domains, such as patient state analysis it is mandatory to always get feedback. This can only be accomplished by increasing the observable field of view. Our proposed concept addresses this issue through the use of multiple cameras. For the realization of facial expression recognition we extended an existing technique. Examples are given for a three camera setup, which substantially enhances the degree of freedom for interaction and/or recognition of facial events. In this article we describe the applied components, such as the adaptation of the generic face model, multi-camera based pose estimation and relevant feature transformations to carry out machine based recognition.


Multi-Camera Imaging Computer Vision Facial Expression Analysis Pattern Recognition Application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human Computing and Machine Understanding of Human Behavior: A Survey. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) ICMI/IJCAI Workshops 2007. LNCS (LNAI), vol. 4451, pp. 47–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Keltner, D., Ekman, P.: Facial expression of emotion. In: Lewis, M., Haviland-Jones, J.M. (eds.) Handbook of Emotions, pp. 236–249 (2000)Google Scholar
  3. 3.
    Niese, R., Al-Hamadi, A., Panning, A., Michaelis, B.: Real-Time Capable Method for Facial Expression Recognition in Color and Stereo Vision. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 397–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Brahnam, S., Chuang, C., Shih, F., Slack, M.: Machine recognition and representation of neonatal facial displays of acute pain. Acute Pain 8(3), 146 (2006)CrossRefGoogle Scholar
  5. 5.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Proc. of SIGGRAPH, pp. 187–194 (1999)Google Scholar
  6. 6.
    Xiao, J., Kanade, T., Cohn, J.F.: Robust Full-Motion Recovery of Head by Dynamic Templates and Re-registration Techniques. International Journal of Imaging Systems and Technology 13, 85–94 (2003)CrossRefGoogle Scholar
  7. 7.
    Castrillón-Santana, M., Lorenzo-Navarro, J., Déniz-Suárez, O., Isern-González, J., Falcón-Martel, A.: Multiple Face Detection at Different Resolutions for Perceptual User Interfaces. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 445–452. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of the 3rd Int. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  9. 9.
    Albertz, J., Kreiling, W.: Photogrammetric Guide. Wichmann Verlag (1989)Google Scholar
  10. 10.
    Niese, R., Al-Hamadi, A., Panning, A., Michaelis, B.: Emotion Recognition based on 2D-3D Facial Feature Extraction from Color Image Sequences. Journal of Multimedia 5(5), 488–500 (2010)CrossRefGoogle Scholar
  11. 11.
    Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A High-Resolution 3D Dynamic Facial Expression Database. In: Proc. of IEEE Conf. FG 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Niese
    • 1
  • Ayoub Al-Hamadi
    • 1
  • Bernd Michaelis
    • 1
  1. 1.Institute for Electronics, Signal Processing, and CommunicationsOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations