Advertisement

Detection of Peri-Papillary Atrophy and RNFL Defect from Retinal Images

  • Gopal Datt Joshi
  • Jayanthi Sivaswamy
  • R. Prashanth
  • S. R. Krishnadas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

The task of detecting peri-papillary indicators associated with the glaucoma is challenging due to the high degree of intra-and inter-image variations commonly seen in colour retinal images. The existing approaches based on direct modeling of the region of interest fail to handle such image variations which compromises detection accuracy. In this paper, a novel detection strategy is proposed which exploits the saliency property associated with these indicators. The region of interest is modeled as a region substantially different from the adjacent image regions. This dissimilarity information is derived at the feature level, between the target and its adjacent regions. Based on the proposed strategy, two novel methods are presented for the detection of peri-papillary atrophy and RNFL defect from colour retinal images. Two different datasets have been used to evaluate the performance of developed solutions. The obtained results are encouraging and establish the strength of the proposed strategy in handling high degree of image variations. The preliminary results and comparative evaluation with direct modeling strategy show viability of proposed strategy to be used in the glaucoma assessment task.

Keywords

Retinal Image Glaucoma Peri-papillary atrophy RNFL defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gazarek, J., Jan, J., Kolar, R., Odstrcilik, J.: Bimodal comparison of retinal nerve fibre layer atrophy evaluation. In: Proc. Biosignal: Analysis of Biomedical Signals and Images, vol. 20, pp. 409–413 (2010)Google Scholar
  2. 2.
    van der Heijden, F., Duin, R.P., de Ridder, D., Tax, D.M.: Classification, parameter estimation and state estimation - an engineering approach using MATLAB. John Wiley & Sons (2004) ISBN 0470090138 Google Scholar
  3. 3.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.R.: Optic disk and cup segmentation from monocular colour retinal images for glaucoma assessment. IEEE Transactions on Medical Imaging (2011)Google Scholar
  4. 4.
    Kolar, R., Jan, J., Kubecka, L.: Computer support for early glaucoma diagnosis based on the fused retinal images. Scripta Medica (BRNO) 79(5-6), 249–260 (2006)Google Scholar
  5. 5.
    Kolar, R., Jan, J., Laemmer, R., Jirik, R.: Semiautomatic detection and evaluation of autofluorescent areas in retinal images. In: Proc. EMBS, pp. 3327–3330 (2007)Google Scholar
  6. 6.
    Kolář, R., Vácha, P.: Texture analysis of the retinal nerve fiber layer in fundus images via markov random fields. In: Proc. IFMBE, vol. 25/XI, pp. 247–250 (2009)Google Scholar
  7. 7.
    Lee, B.H., Wong, D.W.K., Tan, N.M., Zhang, Z., Lim, J.H., Li, H., Yin, F., Liu, J., Huang, W., Saw, S.M., Tong, L., Wong, T.Y.: Fusion of pixel and texture features for the detection of pathological myopia. In: Proc. IEEE Conf. Industrial Electronics and Applications, pp. 2039–2042 (2010)Google Scholar
  8. 8.
    Liu, J., Wong, D.W.K., Tan, N.M., Zhang, Z., Lu, S., Lim, J.H., Li, H.: Automatic classification of pathological myopia in retinal fundus images using PAMELA. In: Proc. SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 7624, p. 76240G (2010)Google Scholar
  9. 9.
    Muramatsu, C., Hayashi, Y., Sawada, A., Hatanaka, Y., Hara, T., Yamamoto, T., Fujita, H.: Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. Journal of Biomedical Optics 15(1), 016021-1 – 016021-7 (2010)Google Scholar
  10. 10.
    Odstrcilik, J., Kolar, R., Harabis, V., Gazarek, J., Jan, J.: Retinal nerve fiber layer analysis via markov random fields texture modelling. In: Proc. EUSIPCO, pp. 1650–1654 (2010)Google Scholar
  11. 11.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  12. 12.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  13. 13.
    Tan, N.M., Liu, J., Wong, D.W.K., Lim, J.H., Zhang, Z., Lu, S., Li, H., Saw, S.M., Tong, L., Wong, T.Y.: Automatic detection of pathological myopia using variational level set. In: Proc. IEEE EMBS, pp. 3609–3612 (2009)Google Scholar
  14. 14.
    Vermeer, K., Vos, F., Lemij, H., Vossepoel, A.: Detecting glaucomatous wedge shaped defects in polarimetric images. Medical Image Analysis 7(4), 503–511 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gopal Datt Joshi
    • 1
  • Jayanthi Sivaswamy
    • 1
  • R. Prashanth
    • 2
  • S. R. Krishnadas
    • 2
  1. 1.IIIT HyderabadHyderabadIndia
  2. 2.Aravind Eye HospitalMaduraiIndia

Personalised recommendations