Advertisement

Automatic Cup-to-Disc Ratio Estimation Using Active Contours and Color Clustering in Fundus Images for Glaucoma Diagnosis

  • Irene Fondón
  • Francisco Núñez
  • Mercedes Tirado
  • Soledad Jiménez
  • Pedro Alemany
  • Qaisar Abbas
  • Carmen Serrano
  • Begoña Acha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

In this paper we propose a new automatic technique for the segmentation of the Optic Disc (OD) and optic nerve head (cup) regions in retinographies for glaucoma diagnosis. It provides an estimation of the Cup-to-Disc Ratio, the main clinical indicator of the disease. OD is detected combining intensity-based, multi-tolerance and morphological methods along with the active contour technique. Cup region is obtained with a new human perception adapted version of the well-known K-means algorithm in the uniform CIE L * a * b * color space with CIE94 color difference. For comparisons, the accurate cup border obtained is rounded and soften with two different techniques: ellipse fitting and mathematical morphology along with Gaussian Smoothing. The proposed method with both rounding steps has been tested in a database of 55 images and compared with the ground truth provided by an expert ophthalmologist. Both, OD and cup region, were satisfactory localized, achieving a mean error of 0.14 for ellipse fitting and 0.13 for morphology. The algorithm proposed seems to be a robust and reliable tool worthy to be included in any CAD system for glaucoma screening programs.

Keywords

glaucoma cup-to-disc-ratio retinal images K-means 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G., Mariotti, S.: Global Data on Visual Impairment in the Year 2002. Bulletin of the World Health Organization 82(11), 887–888 (2004)Google Scholar
  2. 2.
    Quigley, H.A., Broman, A.T.: The Number of People with Glaucoma Worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)CrossRefGoogle Scholar
  3. 3.
    Watkins, R., Panchal, L., Uddin, J., Gunvant, P.: Vertical Cup-to-Disc Ratio:Agreement between Direct Ophthalmoscopic Estimation, Fundus Biomicroscopic Estimation, and Scanning Laser Ophthalmoscopic Measurement. Optometry and Vision Science 80(6), 454–459 (2003)CrossRefGoogle Scholar
  4. 4.
    Varma, R., Spaeth, G.L., Steinmann, W.C., Katz, L.J.: Agreement between Clinicians and an Image Analyzer in Estimating Cup-to-Disc Ratios. Arch. Opthalmol. 107(4), 526–529 (1989)CrossRefGoogle Scholar
  5. 5.
    Sinthanayothin, C., Boyce, J.A., Cook, H.L., Williamson, T.H.: Automated Localization of the Optic Disc, Fovea, and Retinal Blood Vessels from Digital Colour Fundus Images. Br. J. Ophthalmol. 83(8), 902–910 (1999)CrossRefGoogle Scholar
  6. 6.
    Walter, T., Klein, J.-C.: Segmentation of Color Fundus Images of the Human Retina: Detection of the Optic Disc and the Vascular Tree Using Morphological Techniques. In: Crespo, J.L., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 282–287. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Muramatsu, C., Nakagawa, T., Sawada, A., Hatanaka, Y., Hara, T., Yamamoto, T., Fujita, H.: Automated Segmentation of Optic Disc Region on Retinal Fundus Photographs: Comparison of Contour Modeling and Pixel Classification Methods. Computer Methods and Programs in Biomedicine, 23–32 (2010)Google Scholar
  8. 8.
    Jiménez, S., Alemany, P., Núñez, F., Fondón, I., Serrano, M.C., Acha, B.: A New Method for Automated CDR Measurements in Photographic Retinal Images. In: European Glaucoma Society Congress, vol. 9 (2010)Google Scholar
  9. 9.
    Perona, P., Malik, J.: Scale Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Recognition and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  10. 10.
    Lankton, S., Tannenbaum, A.: Localizing Region-Based Active Contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Maulik, S., Bandyopadhyay, S.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  12. 12.
    Walter, T., Massin, P., Erginay, A., Ordoñez, R., Jeulin, C., Klein, J.C.: Automatic Detection of Microaneurysms in Color Fundus Images. Medical Image Analysis 11(6), 555–566 (2007)CrossRefGoogle Scholar
  13. 13.
    Wong, D.W.K., Liu, J., Lim, J.H., et al.: Intelligent Fusion of Cup-to-Disc Ratio Determination Methods for Glaucoma Detection in ARGALI. IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine 5332534, 5777–5780 (2009)Google Scholar
  14. 14.
    McDonald, R., Smith, K.J.: CIE94 - A New Colour-Difference Formula. J. Soc. Dyers. Col. 111, 376–379 (1995)CrossRefGoogle Scholar
  15. 15.
    Luo, M.R., Cui, G., Rigg, B.: The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000. Color Research & Application 26(5), 340–350 (2001)CrossRefGoogle Scholar
  16. 16.
    Lee, T.K., McLean, D.I., Atkins, M.S.: Irregularity Index: A New Border Irregularity Measure for Cutaneous Melanocytic Lesions. Medical Image Analysis 7(1), 47–64 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Irene Fondón
    • 1
  • Francisco Núñez
    • 1
  • Mercedes Tirado
    • 1
  • Soledad Jiménez
    • 2
  • Pedro Alemany
    • 3
  • Qaisar Abbas
    • 4
  • Carmen Serrano
    • 1
  • Begoña Acha
    • 1
  1. 1.Signal Theory DepartamentUniversity of SevilleSevilleSpain
  2. 2.Hospital Universitario Puerta del MarCádizSpain
  3. 3.Surgery DepartmentUniversity of CádizCádizSpain
  4. 4.Department of Computer ScienceNational Textile UniversityFaisalabadPakistan

Personalised recommendations