Fast Segmentation of Retinal Blood Vessels Using a Deformable Contour Model

  • María J. Carreira
  • Lucia Espona
  • Manuel G. Penedo
  • Antonio Mosquera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


This paper presents a deformable contour based method for blood vessel segmentation in digital retinal images. The method was evaluated on the publicly available DRIVE database, widely used for this purpose, since it contains retinal images where the vascular structure has been precisely marked by experts. Method performance is comparable to other existing solutions in literature, but it reaches the result faster than the others. Its effectiveness and velocity make this blood vessel segmentation technique suitable for retinal image computer analysis such as automated screening for early diabetic retinopathy detection.


vessels segmentation retinal imaging deformable contour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mendonça, A.M., Campilho, A.: Segmentation or retinal blood vessels by combining detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  2. 2.
    Taylor, H.R., Keeffe, J.E.: World blindness: a 21st century perspective. Br. J. Ophthalmol. 85, 261–266 (2001)CrossRefGoogle Scholar
  3. 3.
    Klein, R., Meuer, S.M., Moss, S.E., Klein, B.E.: Retinal microaneurysm counts and 10-year progression of diabetic retinopathy. Arch. Ophthalmol. 113, 1386–1391 (1995)CrossRefGoogle Scholar
  4. 4.
    Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano, J.D., Ferris, F.L., Klein, R.: Diabetic retinopathy. Diabetes Care 26, 226–229 (2003)CrossRefGoogle Scholar
  5. 5.
    Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag. 30(1), 146–158 (2011)CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3), 263–269 (1989)CrossRefGoogle Scholar
  7. 7.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)CrossRefGoogle Scholar
  8. 8.
    Espona, L., Carreira, M.J., Ortega, M., Penedo, M.G.: A Snake for Retinal Vessel Segmentation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 178–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Imag. Anal. 11, 47–61 (2007)CrossRefGoogle Scholar
  10. 10.
    Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proc. SPIE Med. Imag: Image Process., vol. 5370, pp. 648–656 (2004)Google Scholar
  11. 11.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  12. 12.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  13. 13.
    Caderno, I.G., Penedo, M.G., Mariño, C., Carreira, M.J., Gomez-Ulla, F., González, F.: Automatic Extraction of the Retina AV Index. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 132–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ortega, M., Mariño, C., Penedo, M.G., Blanco, M., González, F.: Personal authentication based on feature extraction and optic nerve location in digital retinal images. WSEAS Trans. on Computers 5(6), 1169–1176 (2006)Google Scholar
  15. 15.
    Condurache, A.P., Aach, T.: Vessel segmentation in angiograms using hysteresis thresholding. In: IAPR Conference on Machine Vision Applications, pp. 269–272 (2005)Google Scholar
  16. 16.
    Kass, M., Witkin, A., Terzopoulos, D.: Active contour models. Int. J. Computer Vision 1(2), 321–331 (1988)CrossRefGoogle Scholar
  17. 17.
    Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and Extraction of the Optic Disc Using the Fuzzy Circular Hough Transform. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 712–721. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María J. Carreira
    • 1
  • Lucia Espona
    • 3
  • Manuel G. Penedo
    • 4
  • Antonio Mosquera
    • 2
  1. 1.Centro de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaSpain
  2. 2.Departamento de Electrónica e ComputaciónUniversidade de Santiago de CompostelaSpain
  3. 3.Institute of Molecular Systems BiologyETH ZürichSwitzerland
  4. 4.VARPA Group, Departamento de ComputaciónUniversidade da CoruñaSpain

Personalised recommendations