Skip to main content

Function-Valued Mappings, Total Variation and Compressed Sensing for diffusion MRI

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7325))

Included in the following conference series:

Abstract

Being the only imaging modality capable of delineating the anatomical structure of the white matter, diffusion magnetic resonance imaging (dMRI) is currently believed to provide a long-awaited means for early diagnosis of various neurological conditions as well as for interrogating the brain connectivity. Despite substantial advances in practical use of dMRI, a solid mathematical platform for modelling and treating dMRI signals still seems to be missing. Accordingly, in this paper, we show how a Hilbert space of \(\mathbb{L}^2\)-valued mappings \(u: X \to \mathbb{L}^2({\mathbb{S}^2})\), with X being a subset of ℝ3 and \(\mathbb{L}^2({\mathbb{S}^2})\) being the set of squared-integrable functions supported on the unit sphere \({\mathbb{S}^2}\), provides a natural setting for a specific example of dMRI, known as high-angular resolution diffusion imaging. The proposed formalism is also shown to provide a basis for image processing schemes such as total variation minimization. Finally, we discuss a way to amalgamate the proposed models with the tools of compressed sensing to achieve a close-to-perfect recovery of diffusion signals from a minimal number of their discrete measurements. The main outcomes of this paper are supported by a series of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bihan, D.L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurological disorders. Radiology 161, 401–407 (1986)

    Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  3. Tuch, D.S.: Q-ball imaging. Magnetic Resonance in Medicine 52, 1358–1372 (2004)

    Article  Google Scholar 

  4. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine 54, 1194–1206 (2005)

    Article  Google Scholar 

  5. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion images: Estimation and applications. Magnetic Resonance in Medicine 56(2), 395–410 (2006)

    Article  Google Scholar 

  6. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine 58, 497–510 (2007)

    Article  Google Scholar 

  7. Alexander, D.C.: Multiple-fiber reconstruction algorithms for diffusion MRI. Annals of the New York Academy of Science 1064, 113–133 (2005)

    Article  Google Scholar 

  8. Landman, B.A., Wan, H., Bogovic, J.A., Bazin, P.L., Prince, J.L.: Resolution of crossing fibers with constrained compressed sensing using traditional Diffusion Tensor MRI. In: Proceedings of SPIE, Medical Imaging, San Diego, CA (February 2010)

    Google Scholar 

  9. Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of hardi images. Int. J. Comput. Vis. (2010), doi:10.1007/s11263-010-0332-z

    Google Scholar 

  10. La Torre, D.L., Vrscay, E.R., Ebrahimi, M., Barnsley, M.F.: Measure-valued images, associated fractal transforms and the self-similarity of images. SIAM Journal of Imaging Sciences 2(2), 470–507 (2009)

    Article  MATH  Google Scholar 

  11. La Torre, D.L., Vrscay, E.R.: Random measure-valued image functions, fractal transforms and self-similarity. Applied Mathematics Letters 24, 1405–1410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  14. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Christensen, O.: Frames and bases: An introductory course. Birkhäuser (2008)

    Google Scholar 

  16. Guoju, Y., Congxin, W., Yee, L.P.: Integration by parts for the Denjoy-Bochner integral. Southeast Asian Bulletin of Mathematics 26, 693–700 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knapp, A.W.: Advanced real analysis. Birkhäuser (2005)

    Google Scholar 

  18. Groemer, H.: Geometric applications of Fourier series and spherical harmonics. Cambridge University Press (1996)

    Google Scholar 

  19. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  20. Bregman, L.M.: A relaxation method for finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics (7), 200–217 (1967)

    Article  Google Scholar 

  21. Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming (55) (1992)

    Google Scholar 

  22. Michailovich, O., Rathi, Y.: On approximation of orientation distributions by means of spherical ridgelets. IEEE Trans. Image Process. 19(2), 461–477 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michailovich, O., La Torre, D., Vrscay, E.R. (2012). Function-Valued Mappings, Total Variation and Compressed Sensing for diffusion MRI. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31298-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31297-7

  • Online ISBN: 978-3-642-31298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics