Advertisement

Function-Valued Mappings, Total Variation and Compressed Sensing for diffusion MRI

  • O. Michailovich
  • D. La Torre
  • Edward R. Vrscay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

Being the only imaging modality capable of delineating the anatomical structure of the white matter, diffusion magnetic resonance imaging (dMRI) is currently believed to provide a long-awaited means for early diagnosis of various neurological conditions as well as for interrogating the brain connectivity. Despite substantial advances in practical use of dMRI, a solid mathematical platform for modelling and treating dMRI signals still seems to be missing. Accordingly, in this paper, we show how a Hilbert space of \(\mathbb{L}^2\)-valued mappings \(u: X \to \mathbb{L}^2({\mathbb{S}^2})\), with X being a subset of ℝ3 and \(\mathbb{L}^2({\mathbb{S}^2})\) being the set of squared-integrable functions supported on the unit sphere \({\mathbb{S}^2}\), provides a natural setting for a specific example of dMRI, known as high-angular resolution diffusion imaging. The proposed formalism is also shown to provide a basis for image processing schemes such as total variation minimization. Finally, we discuss a way to amalgamate the proposed models with the tools of compressed sensing to achieve a close-to-perfect recovery of diffusion signals from a minimal number of their discrete measurements. The main outcomes of this paper are supported by a series of experimental results.

Keywords

\(\mathbb{L}^2\)-valued functions image analysis diffusion MRI and compressed sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bihan, D.L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurological disorders. Radiology 161, 401–407 (1986)Google Scholar
  2. 2.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRefGoogle Scholar
  3. 3.
    Tuch, D.S.: Q-ball imaging. Magnetic Resonance in Medicine 52, 1358–1372 (2004)CrossRefGoogle Scholar
  4. 4.
    Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine 54, 1194–1206 (2005)CrossRefGoogle Scholar
  5. 5.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion images: Estimation and applications. Magnetic Resonance in Medicine 56(2), 395–410 (2006)CrossRefGoogle Scholar
  6. 6.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine 58, 497–510 (2007)CrossRefGoogle Scholar
  7. 7.
    Alexander, D.C.: Multiple-fiber reconstruction algorithms for diffusion MRI. Annals of the New York Academy of Science 1064, 113–133 (2005)CrossRefGoogle Scholar
  8. 8.
    Landman, B.A., Wan, H., Bogovic, J.A., Bazin, P.L., Prince, J.L.: Resolution of crossing fibers with constrained compressed sensing using traditional Diffusion Tensor MRI. In: Proceedings of SPIE, Medical Imaging, San Diego, CA (February 2010)Google Scholar
  9. 9.
    Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of hardi images. Int. J. Comput. Vis. (2010), doi:10.1007/s11263-010-0332-zGoogle Scholar
  10. 10.
    La Torre, D.L., Vrscay, E.R., Ebrahimi, M., Barnsley, M.F.: Measure-valued images, associated fractal transforms and the self-similarity of images. SIAM Journal of Imaging Sciences 2(2), 470–507 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    La Torre, D.L., Vrscay, E.R.: Random measure-valued image functions, fractal transforms and self-similarity. Applied Mathematics Letters 24, 1405–1410 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1221 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72(2), 341–366 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Christensen, O.: Frames and bases: An introductory course. Birkhäuser (2008)Google Scholar
  16. 16.
    Guoju, Y., Congxin, W., Yee, L.P.: Integration by parts for the Denjoy-Bochner integral. Southeast Asian Bulletin of Mathematics 26, 693–700 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Knapp, A.W.: Advanced real analysis. Birkhäuser (2005)Google Scholar
  18. 18.
    Groemer, H.: Geometric applications of Fourier series and spherical harmonics. Cambridge University Press (1996)Google Scholar
  19. 19.
    Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bregman, L.M.: A relaxation method for finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics (7), 200–217 (1967)CrossRefGoogle Scholar
  21. 21.
    Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming (55) (1992)Google Scholar
  22. 22.
    Michailovich, O., Rathi, Y.: On approximation of orientation distributions by means of spherical ridgelets. IEEE Trans. Image Process. 19(2), 461–477 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. Michailovich
    • 1
  • D. La Torre
    • 2
  • Edward R. Vrscay
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Economics, Business and StatisticsUniversity of MilanItaly
  3. 3.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations