Computer Aided Diagnosis of Alzheimer’s Disease from MRI Brain Images

  • Namita Aggarwal
  • Bharti
  • R. K. Agrawal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


Computer aided diagnosis of Alzheimer’s disease from MRI brain images has drawn the attention of pattern recognition and machine learning research community in last few years. Relevant feature extraction from such MRI images is one of the challenging issues in decision system. Recently dominant values obtained from 6 level decomposition using Slantlet transform are used to construct such features. In this paper, we have determined relevant features using first order statistics on coefficients obtained from Slantlet transform. We have compared the performance in terms of 8 well known and a combined performance measures. Experimental results on publicly available MRI dataset show that proposed method outperforms the dominant value based features extracted using Slantlet transform in terms of both individual and combined performance measures.


MRI Feature extraction Slantlet transform First order statistics Performance measures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, M., DeCarli, C., DeKosky, S., De Leon, M., Foster, N., Fox, N., et al.: The Use of MRI and PET for Clinical Diagnosis of Dementia and Investigation of Cognitive Impairment: A Consensus Report, Prepared by the Neuroimaging Work Group of the Alzheimer’s Association (2004)Google Scholar
  2. 2.
    Mortiz, C., Haughton, V., Cordes, D., Quigley, M., Meyerand, M.: Whole-brain functional MR imaging activation from finger tapping task examined with independent component analysis. American Journal of Neuroradiology 21, 1629–1635 (2000)Google Scholar
  3. 3.
    Bracewell, R.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, New York (1999)Google Scholar
  4. 4.
    Chaplot, S., Patnaik, L., Jagannathan, N.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. and Control 1, 86–92 (2006)CrossRefGoogle Scholar
  5. 5.
    Dahshan, E.-S., Hosny, T., Salem, A.-B.: A hybrid technique for automatic MRI brain images classification. Digital Signal Processing 20, 433–441 (2010)CrossRefGoogle Scholar
  6. 6.
    Maitra, M., Chatterjee, A.: A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomedical Signal Processing and Control 1, 299–306 (2006)CrossRefGoogle Scholar
  7. 7.
    Haralick, R., Shanmugan, K., Dinstein, I.: Textural Features for Image Classification. IEEE Transactions on Systems: Man, and Cybernetics SMC 3, 610–621 (1973)CrossRefGoogle Scholar
  8. 8.
    Materka, A., Strzeleck, M.: Texture Analysis Methods - A Review. COST B11 report, Technical University of Lodz, Brussels (1998) Google Scholar
  9. 9.
    Begg, R., Palaniswami, M., Owen, B.: Support vector machines for automated gait classification. IEEE Transactions on Biomedical Engineering 52(5), 828–838 (2005)CrossRefGoogle Scholar
  10. 10.
    Selesnick, I.W.: The Slantlet Transform. IEEE Transactions on Signal Processing  47(5) (May 1999) Google Scholar
  11. 11.
    Bellman, R.: Adaptive control processes: A guided tour. Princeton University Press (1961) Google Scholar
  12. 12.
    Gonzalez, R., Woods, R.: Wavelet and Multiresolution Processing. In: Digital Image Processing, 2nd edn., pp. 349–408. Pearson Education (2004)Google Scholar
  13. 13.
    Chen, J., Kundu, A.: Rotation and grey-scale transform invariant texture identification using wavelet decomposition and HMM. IEEE Trans. PAMI 16(2), 208–214 (1994)CrossRefGoogle Scholar
  14. 14.
    Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. 14(1), 159–184 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Aldroubi, A., Unser, M., Eden, M.: Discrete spline filters for multiresolution and wavelets of I2. SIAM Journal on Mathematical Analysis 25(5), 1412–1432 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Johnson, K., Becker, J.: The whole brain atlas. In: Harvard Medical School (accessed 1995),
  17. 17.
    George, A., Leon, M., Golomb, J., Kluger, A., Convit, A.: Imaging the brain in dementia: expensive and futile? Am. J. Neuroradiol. 18, 1847–1850 (1997)Google Scholar
  18. 18.
    Laakso, M., Frisoni, G., Kononen, M., Mikkonen, M., Beltramello, A., Geroldi, C., Bianchetti, A., Trabucchi, M., Soininen, H., Aronen, H.: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s disease: a morphometric MRI study. Biol. Psychiat. 47, 1056–1063 (2000)CrossRefGoogle Scholar
  19. 19.
    Erkinjuntti, T., Lee, D., Gao, F., Steenhuis, R., Eliasziw, M., Fry, R., Merskey, H., Hachinski, V.: Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Arch. Neurol. 50, 305–310 (1993)CrossRefGoogle Scholar
  20. 20.
    Duin, R., Juszcak, P., Paclik, P., Pekalska, E., De Ridder, D., Tax, D.: Prtools, a matlab toolbox for pattern recognition (accessed 2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Namita Aggarwal
    • 1
  • Bharti
    • 1
  • R. K. Agrawal
    • 1
  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations