Advertisement

Class-Specific Mahalanobis Distance Metric Learning for Biological Image Classification

  • B. S. Shajee Mohan
  • C. Chandra Sekhar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

Distance metric learning (DML) is an emerging field of machine learning. The basic idea behind DML is to adapt the underlying distance metric to improve the performance for the pattern analysis tasks. In this paper, we present the use of DML techniques to improve the classification accuracy of k-Nearest Neighbour classifier (kNN) used for biological image classification tasks. The distance metric learning technique is used for learning the Mahalanobis distance metric. The learning problem is cast into a Bregman optimization problem that minimizes the LogDet divergence subject to linear constraints. We propose the class-specific Mahalanobis distance metric learning for further improvement of the performance of the kNN classifier. Results of our studies on benchmark data sets demonstrate the effectiveness of the distance metric learning techniques in classification of biological images.

Keywords

Distance metric learning kNN classifier Class specific Mahalanobis distance metric learning Bregman divergence LogDet divergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinberger, K.Q., Sha, F., Saul, L.: Convex Optimization for Distance Metric Learning and Pattern Classification. IEEE Signal Processing Magazine 10, 146–150 (2010)CrossRefGoogle Scholar
  2. 2.
    Yang, L., Jin, R.: Distance Metric Learning: A Comprehensive Survey. Technical Reports, Dept. of CSE, Michigan State University, vol. 1 (2006)Google Scholar
  3. 3.
    Davis, J.V., Kulis, B., Prateek, J., Survit, S., Dillon, I.S.: Information Theoretic Metric Learning. In: Proceeding of the 24th International Conference on Machine Learning, Convallis, OR (2007)Google Scholar
  4. 4.
    Weinberger, K.Q., Sha, F., Saul, L.: Metric Learning for Large Margin Nearest Neighbor Classification. In: Advances in Neural Information Processing Systems, vol. 18. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Dhillon, I.S., Tropp, J.: Matrix Nearness Problems with Bregman Divergences. SIAM Journal of Matrix Analysis and Applications 29, 1120–1146 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jain, P., Kulis, B.: Metric and Kernel Learning Using Linear Transformation. International Journal of Machine Learning 19, 1325–1352 (2009)Google Scholar
  7. 7.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russel, S.: Distance Metric Learning with Applications to Clustering with Side Information. In: Advances in Neural Information Processing Systems (NIPS), vol. 14 (2002)Google Scholar
  8. 8.
    Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbour Classification. In: Advances in Neural information Processing Systems, NIPS (2005)Google Scholar
  9. 9.
  10. 10.
    Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Jonson, J., Goldberg, I.G.: Wndchrm - An Open Source Utility for Biological Image Analysis. Source Code for Biology and Medicine 2008 3(13) (2008)Google Scholar
  11. 11.
    Quanquan, G., Zhenhui, L., Jiawei, H.: Generalized Fisher Score for Feature Selection. In: Proceedings of the International Conference on Uncertainty in Artificial Intelligence (2011)Google Scholar
  12. 12.
    Shamir, L., Orlov, N., Eckley, D.M., Goldberg, I.G.: IICBU 2008 - A Benchmark Suite for Biological Imaging. In: 3rd Workshop on Bio-Image Informatics. Biological Imaging, Computer Vision and Data Mining; Santa Barbara, CA, p. 1240 (2008)Google Scholar
  13. 13.
    Murphy, R.F.: Automated Interpretation of Protein Sub-cellular Location Patterns: Implications for Early Detection and Assessment. Annals of the New York Academy of Sciences 1020, 124–131 (2004)CrossRefGoogle Scholar
  14. 14.
    France, I., Duller, A.W.G., Lamb, H.F., Duller, G.A.T.: A Comparative Study of Approaches to Pollen Identification. In: British Machine Vision Conference (1997)Google Scholar
  15. 15.
    Boland, M., Markey, M., Murphy, R.F.: Automated Recognition of Pattern Characteristic of Sub-cellular Structures in Fluorescence Microscopy Images. Cytometry 33, 366–375 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. S. Shajee Mohan
    • 1
  • C. Chandra Sekhar
    • 1
  1. 1.Computer Science and Engineering DepartmentIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations