Automated Segmentation of Brain Tumor Using Optimal Texture Features and Support Vector Machine Classifier

  • Karim Gasmi
  • Ahmed Kharrat
  • Mohamed Ben Messaoud
  • Mohamed Abid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


This paper presents a new general automatic method for segmenting brain tumors in magnetic resonance (MR) images. Our approach addresses all types of brain tumors. The proposed method involves, subsequently, image pre-processing, feature extraction via wavelet transform (WT), dimensionality reduction using genetic algorithm (GA) and classification of the extracted features using support vector machine (SVM). For the segmentation of brain tumor these optimal features are employed. The resulting method is aimed at early tumor diagnostics support by distinguishing between the brain tissue, benign tumor and malignant tumor tissue. The segmentation results on different types of brain tissue are evaluated by comparison with manual segmentation as well as with other existing techniques.


Image pre-processing Wavelet transform Genetic algorithm support vector machine segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antolík, J., Hsu, W.H.: Evolutionary tree genetic programming. In: GECCO, pp. 1789–1790 (2005)Google Scholar
  2. 2.
    Bai, L., Liu, Y., Auer, D., Morgan, P.: Automatic segmentation of putamen from brain mri. In: IPCV, pp. 489–495 (2006)Google Scholar
  3. 3.
    Benamrane, N., Freville, A., Nekkache, R.: A hybrid fuzzy neural networks for the detection of tumors in medical images. American Journal of Applied Sciences 2(4), 892–896 (2005)CrossRefGoogle Scholar
  4. 4.
    Chaplot, S., Patnaik, L.M., Jagannathan, N.R.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomedical Signal Processing and Control 1(1), 86–92 (2006)CrossRefGoogle Scholar
  5. 5.
    Clark, M.C., Hall, L.O., Goldgof, D.B., Velthuizen, R., Reed, F., Silbiger, M.S.: Automatic tumor segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging 17, 187–201 (1998)CrossRefGoogle Scholar
  6. 6.
    Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Design 28(1), 45–62 (2002)Google Scholar
  7. 7.
    Ferri, F.J., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature selection (1994)Google Scholar
  8. 8.
    Fodor, I.: A survey of dimension reduction techniques. Technical report (2002)Google Scholar
  9. 9.
    Giger, M.L., Chan, H., Boone, J.: Anniversary paper: History and status of cad and quantitative image analysis: the role of medical physics and aapm. Med. Phys. 35(12), 5799–5820 (2008)CrossRefGoogle Scholar
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar
  11. 11.
    Gonzales, R.C., Wintz, P.: Digital image processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1987)Google Scholar
  12. 12.
    Haralick, R., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6) (1973)Google Scholar
  13. 13.
    Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: Automatic 3-d segmentation of brain tumors. In: ICPR, vol. 1, pp. 532–535 (2002)Google Scholar
  14. 14.
    Kharrat, A., Benamrane, N., Messaoud, M.B., Abid, M.: Evolutionary support vector machine for parameters optimization applied to medical diagnostic. In: VISAPP, pp. 201–204 (2011)Google Scholar
  15. 15.
    Kharrat, A., Gasmi, K., Messaoud, M.B., Benamrane, N., Abid, M.: Automated classification of magnetic resonance brain images using wavelet genetic algorithm and support vector machine. In: IEEE ICCI, pp. 369–374 (2010)Google Scholar
  16. 16.
    Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3d brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets and Systems 160(10), 1457–1473 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lecoeur, J., Barillot, C.: Segmentation d’images cérébrales: État de l’art. Research Report RR-6306, INRIA (2007)Google Scholar
  18. 18.
    Materka, A., Strzelecki, M.: Texture Analysis, Methods A Review, Technical report, Institute of Electronics, Technical University of Lodz (1998)Google Scholar
  19. 19.
    Balchandran, R., Mammone, R.: Non-parametric estimation and correction of non-linear distortion in speech system, pp. 749–752 (May 1998)Google Scholar
  20. 20.
    Raymer, M.L., Punch III, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evolutionary Computation 4(2), 164–171 (2000)CrossRefGoogle Scholar
  21. 21.
    Russ, J.C.: The image processing handbook, 2nd edn. CRC Press, Inc., Boca Raton (1995)Google Scholar
  22. 22.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  23. 23.
    Harvard Medical Schooll,
  24. 24.
    Soh, L.K., Tsatsoulis, C.: Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on Geoscience and Remote Sensing 37(2), 780–795 (1999)CrossRefGoogle Scholar
  25. 25.
    Vapnik, V.N.: Estimation of dependences based on empirical data (1979) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karim Gasmi
    • 1
  • Ahmed Kharrat
    • 1
  • Mohamed Ben Messaoud
    • 2
  • Mohamed Abid
    • 1
  1. 1.CES LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.ATMS LaboratoryUniversity of SfaxSfaxTunisia

Personalised recommendations