Advertisement

Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts

  • Christian Hollensen
  • George Cannon
  • Donald Cannon
  • Søren Bentzen
  • Rasmus Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

Lung cancer is the most common cause of cancer-related death. A common treatment is radiotherapy where the lung tumors are irradiated with ionizing radiation. The treatment is typically fractionated, i.e. spread out over time, allowing healthy tissue to recover between treatments and allowing tumor cells to be hit in their most sensitive phase. Changes in tumors over the course of treatment allows for an adaptation of the radiotherapy plan based on 3D computer tomography imaging. This paper introduces a method for segmentation of lung tumors on consecutive computed tomography images. These images are normally only used for correction of movements. The method uses graphs based on electric flow lines. The method offers several advantages when trying to replicate manual segmentations. The method gave a dice coefficient of 0.85 and performed better than level set methods and deformable registration.

Keywords

Electric flow line segmentation lung tumor graph cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weber, W., et al.: Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology 21, 2651–2657 (2003)CrossRefGoogle Scholar
  2. 2.
    Siker, M.L., Tomé, W.A., Mehta, M.P.: Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? International Journal of Radiation Oncology Biology Physics 66, 135–141 (2006)CrossRefGoogle Scholar
  3. 3.
    Bral, S., et al.: Daily megavoltage computed tomography in lung cancer radiotherapy: correlation between volumetric changes and local outcome. International Journal of Radiation Oncology Biology Physics 80, 1338–1342 (2011)CrossRefGoogle Scholar
  4. 4.
    Kuhnigk, J.M., et al.: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic ct scans. IEEE Trans. Medical Imaging 25, 417–434 (2006)CrossRefGoogle Scholar
  5. 5.
    Fetita, C.I., Prêteux, F., Beigelman-Aubry, C., Grenier, P.: 3D Automated Lung Nodule Segmentation in HRCT. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 626–634. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Faggiano, E., et al.: Validation of an elastic registration technique to estimate anatomical lung modification in non-small-cell lung cancer tomotherapy. Radiation Oncology 6, 31 (2011)CrossRefGoogle Scholar
  7. 7.
    Wu, X., Chen, D.Z.: Optimal Net Surface Problems with Applications. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1029–1042. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Yin, Y., Song, Q., Sonka, M.: Electric Field Theory Motivated Graph Construction for Optimal Medical Image Segmentation. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 334–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Petersen, J., et al.: Optimal graph based segmentation using flow lines with application to airway wall segmentation. Information Processing in Medical Imaging 22, 49–60 (2011)CrossRefGoogle Scholar
  10. 10.
    Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: IEEE Computer Society Conference on Computer Vision Pattern Recognition Proceedings, pp. 648–655 (1998)Google Scholar
  11. 11.
    Jørgensen, P., Hansen, K., Larsen, R., Bowen, J.: A framework for automatic segmentation in three dimensions of microstructural tomography data. Ultramicroscopy 110, 216–228 (2010)CrossRefGoogle Scholar
  12. 12.
    Vester-Christensen, M., Erbou, S.G., Darkner, S., Larsen, R.: Accelerated 3d image registration. In: SPIE Medical Imaging (2007)Google Scholar
  13. 13.
    Adkison, J.B., et al.: Dose escalated, hypofractionated radiotherapy using helical tomotherapy for inoperable non-small cell lung cancer: preliminary results of a risk-stratified phase I dose escalation study. Technology in Cancer Research Treatment 7, 441–447 (2008)Google Scholar
  14. 14.
    Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: a computational environment for radiotherapy research. Medical Physics 30, 979–985 (2003)CrossRefGoogle Scholar
  15. 15.
    Steenbakkers, R.J.H.M., et al.: Reduction of observer variation using matched ct-pet for lung cancer delineation: a three-dimensional analysis. International Journal of Radiation Oncology Biology Physics 64, 435–448 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Hollensen
    • 1
  • George Cannon
    • 2
  • Donald Cannon
    • 2
  • Søren Bentzen
    • 2
  • Rasmus Larsen
    • 1
  1. 1.Department of Informatics and Mathematical ModellingTechnical University of DenmarkDenmark
  2. 2.Department of Human OncologyUniversity of WisconsinUSA

Personalised recommendations