Advertisement

Hemoglobin and Melanin Quantification on Skin Images

  • Hao Gong
  • Michel Desvignes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

In this paper, we propose and compare four different approaches for quantification of hemoglobin and melanin on skin color image. The first method is to extract erythema/melanin indices based on skin absorbance theories. The second method is based on independent component analysis (ICA) assuming that hemoglobin and melanin absorbance spectra are independent. The third method is proposed based on non-negative matrix factorization (NMF) with multiplicative update algorithm. Finally, we propose a model-fitting technique based on Beer-Lambert law. Quantitative evaluation through graph-cut segmentation on 30 melanoma lesions from 10 patients indicates that model-fitting method outperforms the other three methods.

Keywords

skin color image hemoglobin melanin ICA NMF model-fitting graph cuts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamamoto, T., Takiwaki, H., Ohshima, H.: Derivation and clinical application of special imaging by means of digital cameras and imagej freeware for quantification of erythema and pigmentation. Skin Research and Technology 14, 26–34 (2008)Google Scholar
  2. 2.
    Tsumura, N., Haneishi, H., Miyake, Y.: Independent component analysis of skin color image. J. Opt. Soc. Am. A 16, 2169–2176 (1999)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.R., Parrish, J.A.: The optics of human skin. J. Investig. Dermatol. 77, 13–19 (1981)CrossRefGoogle Scholar
  4. 4.
    Stamatas, G.N., Zmudzka, B.Z., Kollias, N.: Non-invasive measurements of skin pigmentation in situ. Pigment Cell Research 17, 618–626 (2004)CrossRefGoogle Scholar
  5. 5.
    Hyvärien, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)CrossRefGoogle Scholar
  6. 6.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  7. 7.
    Prahl, S.: Tabulated molar extinction coefficient for hemoglobin in water, http://omlc.ogi.edu/spectra/hemoglobin/summary.html
  8. 8.
    Jacques, S.: Extinction coefficient of melanin, http://omlc.ogi.edu/spectra/melanin/eumelanin.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hao Gong
    • 1
  • Michel Desvignes
    • 1
  1. 1.GIPSA-LabGrenoble Institute of Technology, Domaine UniversitaireGrenobleFrance

Personalised recommendations