Advertisement

A Segmentation Model and Application to Endoscopic Images

  • Isabel N. Figueiredo
  • Juan Carlos Moreno
  • V. B. Surya Prasath
  • Pedro N. Figueiredo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

In this paper a variational segmentation model is proposed. It is a generalization of the Chan and Vese model, for the scalar and vector-valued cases. It incorporates extra terms, depending on the image gradient, and aims at approximating the smoothed image gradient norm, inside and outside the segmentation curve, by mean constant values. As a result, a flexible model is obtained. It segments, more accurately, any object displaying many oscillations in its interior. In effect, an external contour of the object, as a whole, is achieved, together with internal contours, inside the object. For determining the approximate solution a Levenberg-Marquardt Newton-type optimization method is applied to the finite element discretization of the model. Experiments on in vivo medical endoscopic images (displaying aberrant colonic crypt foci) illustrate the efficacy of this model.

Keywords

segmentation variational methods level-sets vector-valued images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, D.G., Gostout, C.J., Sorbi, D., et al.: Endoscopic identification and quantification of the aberrant crypt in the human colon. Gastrointestinal Endoscopy 56, 657–662 (2002)CrossRefGoogle Scholar
  2. 2.
    Chan, T.F., Esedöglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active Contours without Edges for Vector-Valued Images. Journal of Visual Communication and Image Representation 11(2), 130–141 (2000)CrossRefGoogle Scholar
  5. 5.
    Comsol Multiphysics®, http://www.comsol.com/
  6. 6.
    Figueiredo, I.N., Figueiredo, P.N., Stadler, G., Almeida, N., Ghattas, O., Araújo, O.: Variational Image Segmentation for Endoscopic human colonic aberrant crypt foci. IEEE Transactions on Medical Imaging 29(4), 998–1011 (2010)CrossRefGoogle Scholar
  7. 7.
    Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. Journal of Scientific Computing, 1–22 (2009), doi:10.1007/s10915-009-9331-zGoogle Scholar
  8. 8.
    Roncucci, L., Medline, A., Bruce, W.R.: Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiology, Biomarkers & Prevention 1, 57–60 (1991)Google Scholar
  9. 9.
    Takayama, T., Katsuki, S., Takahashi, Y., et al.: Aberrant crypt foci of the colon as precursors of adenoma and cancer. The New England Journal of Medicine 339, 1277–1284 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isabel N. Figueiredo
    • 1
  • Juan Carlos Moreno
    • 1
  • V. B. Surya Prasath
    • 2
  • Pedro N. Figueiredo
    • 3
    • 4
  1. 1.CMUC, Deparment of MathematicsUniversity of CoimbraPortugal
  2. 2.Department of Computer ScienceUniversity of Missouri-ColumbiaUSA
  3. 3.Faculty of MedicineUniversity of CoimbraPortugal
  4. 4.Department of GastroenterologyUniversity Hospital of CoimbraPortugal

Personalised recommendations