Depth Information in Human Gait Analysis: An Experimental Study on Gender Recognition

  • Ricard Borràs
  • Àgata Lapedriza
  • Laura Igual
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


This work presents DGait, a new gait database acquired with a depth camera. This database contains videos from 53 subjects walking in different directions. The intent of this database is to provide a public set to explore whether the depth can be used as an additional information source for gait classification purposes. Each video is labelled according to subject, gender and age. Furthermore, for each subject and view point, we provide initial and final frames of an entire walk cycle. On the other hand, we perform gait-based gender classification experiments with DGait database, in order to illustrate the usefulness of depth information for this purpose. In our experiments, we extract 2D and 3D gait features based on shape descriptors, and compare the performance of these features for gender identification, using a Kernel SVM. The obtained results show that depth can be an information source of great relevance for gait classification problems.


Biometrics Gender Recognition Human Gait features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osu svm is a support vector machine (svm) toolbox for the matlab numerical environment,
  2. 2.
    Casia: Casia gait database (2005),
  3. 3.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 316–322 (2006)Google Scholar
  4. 4.
    Kinect: Microsoft corp. redmond wa. kinect for xbox 360 (2010)Google Scholar
  5. 5.
    Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: Gait components and their application to gender recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 145–155 (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Makihara, Y., Mannami, H., Yagi, Y.: Gait Analysis of Gender and Age Using a Large-Scale Multi-view Gait Database. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 440–451. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    OpenNI: Openni organization,
  8. 8.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  9. 9.
    Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)CrossRefGoogle Scholar
  10. 10.
    Shan, C., Gong, S., McOwan, P.W.: Fusing gait and face cues for human gender recognition. Neurocomputing 71(10-12), 1931–1938 (2008)CrossRefGoogle Scholar
  11. 11.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the Computer Vision and Pattern Recognition Conference (2011)Google Scholar
  12. 12.
    Soton: University of southampton. database collection of programme automatic gait recognition for human id at a distance at sotonGoogle Scholar
  13. 13.
    Tech., G.: Georgia tech. gvu center/college of computing. data of project human identification at a distanceGoogle Scholar
  14. 14.
    Wang, Y.: Investigating the separability of features from different views for gait based gender classification. In: 19th International Conference on Pattern Recognition, ICPR 2008., pp. 1–4. IEEE (2008)Google Scholar
  15. 15.
    Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Transactions on Image Processing 18(8), 1905–1910 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ricard Borràs
    • 1
  • Àgata Lapedriza
    • 1
    • 2
  • Laura Igual
    • 1
    • 3
  1. 1.Centre de Visió per ComputadorBarcelonaSpain
  2. 2.Universitat Oberta de CatalunyaSpain
  3. 3.Universitat de BarcelonaSpain

Personalised recommendations