Multi-stage Visible Wavelength and Near Infrared Iris Segmentation Framework

  • Andreas Uhl
  • Peter Wild
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)


This paper presents a multi-stage iris segmentation framework for the localization of pupillary and limbic boundaries of human eyes. Instead of applying time-consuming exhaustive search approaches, like traditional circular Hough Transform or Daugman’s integrodifferential operator, an iterative approach is used. By decoupling coarse center detection and fine boundary localization, faster processing and modular design can be achieved. This alleviates more sophisticated quality control and feedback during the segmentation process. By avoiding database-specific optimizations, this work aims at supporting different sensors and light spectra, i.e. Visible Wavelength and Near Infrared, without parameter tuning. The system is evaluated by using multiple open iris databases and it is compared to existing classical approaches.


Iris biometrics segmentation preprocessing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhyankar, A., Schuckers, S.: Active shape models for effective iris segmentation. In: Proc. of SPIE, p. 62020H (2006)Google Scholar
  2. 2.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding 110(2), 281–307 (2008)CrossRefGoogle Scholar
  3. 3.
    Cauchie, J., Fiolet, V., Villers, D.: Optimization of an hough transform algorithm for the search of a center. Pattern Recognition 41(2), 567–574 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N., Andrian, J.: A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vision Computing 28, 261–269 (2010)CrossRefGoogle Scholar
  5. 5.
    Daugman, J.: How iris recognition works. IEEE Trans. on Circiuts and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  6. 6.
    Daugman, J.: New methods in iris recognition. IEEE Trans. on Systems, Man, and Cybenetics Part B 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  7. 7.
    He, Z., Tan, T., Sun, Z.: Iris localization via pulling and pushing. In: Proc. of Int’l Conf. on Pattern Recognition (ICPR), pp. 366–369 (2006)Google Scholar
  8. 8.
    Labati, R.D., Piuri, V., Scotti, F.: Agent-based image iris segmentation and multipleviews boundary refining. In: Proc. of IEEE Int’l Conf. on Biometrics: Theory, Applications and Systems (BTAS), pp. 204–210 (2009)Google Scholar
  9. 9.
    Li, P., Liu, X.: An incremental method for accurate iris segmentation. In: Proc. of Int’l Conf. on Pattern Recognition (ICPR), pp. 1–4 (2008)Google Scholar
  10. 10.
    Luengo-Oroz, M., Faure, E., Angulo, J.: Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vision Computing 28, 278–284 (2010)CrossRefGoogle Scholar
  11. 11.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. on Image Processing 13(6), 739–750 (2004)CrossRefGoogle Scholar
  12. 12.
    Proença, H.: Iris Recognition: A Method to Segment Visible Wavelength Iris Images Acquired On-the-Move and At-a-Distance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 731–742. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Proença, H., Alexandre, L.A.: Iris recognition: Analysis of the error rates regarding the accuracy of the segmentation stage. Image and Vision Computing 28(1), 202–206 (2010)CrossRefGoogle Scholar
  14. 14.
    Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. J. VLSI Signal Process. Syst. 38(1), 35–44 (2004)CrossRefGoogle Scholar
  15. 15.
    Schuckers, S., Schmid, N., Abhyankar, A., Dorairaj, V., Boyce, C., Hornak, L.: On techniques for angle compensation in nonideal iris recognition. IEEE Trans. on Systems, Man, and Cybenetics Part B 37(5), 1176–1190 (2007)CrossRefGoogle Scholar
  16. 16.
    Uhl, A., Wild, P.: Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation. In: Proc. Int’l Conf. on Biometrics, ICB, pp. 1–8 (2012)Google Scholar
  17. 17.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. of the IEEE 85, 1348–1363 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Uhl
    • 1
  • Peter Wild
    • 1
  1. 1.Multimedia Signal Processing and Security Lab, Department of Computer SciencesUniversity of SalzburgAustria

Personalised recommendations